A mathematical Introduction to Robotic Manipulation

輪講第六章

発表者: Zhang Xinyi (張 馨芸)

2021.10.8@マニピュレーション若手の会・勉強会

• Besides this book, I made this slides under the references of other two books:

<u>A Mathematical Introduction</u> <u>to Robotic Manipulation</u>

Introduction to Robotics Mechanics and Control

Modern Robotics

Chapter 6: Hand Dynamics and Control

Contents	Goal
1. Lagrange's Equations with Constraints	Calculate the dynamics of a mechanical system subject to Pfaffian constraints
2. Robot Hand Dynamics	Derive the equations of motion for a multifingered hand manipulating an object
3. Redundant and Nonmanipulable Robot Systems	Derive more complex equations of motion for redundant or nonmanipulable robot system
4. Kinematics and Statics of Tendon actuation	Describe the kinematics of tendon-driven systems
5. Control of Robot Hands	Introduce an extended control law for constraints-involved system and other control structures

Contents of This Talk

- Recall
- Lagrange's Equations with Constraints
- Robot Hand Dynamics
- Redundant and Nonmanipulable Robot Systems
- Kinematics and Statics of Tendon Actuation
- Control of Robot Hand

Contents of This Talk

Recall

- Chapter 4 Robot Dynamics and Control
- ° Chapter 5 Multifingered Hand Kinematics
- Lagrange's Equations with Constraints
- Robot Hand Dynamics
- Redundant and Nonmanipulable Robot Systems
- Kinematics and Statics of Tendon Actuation
- Control of Robot Hand

Recall

• We only need to recall Jacobian

The manipulator Jacobian relates the joint velocities $\dot{\theta}$ to the endeffector velocity V_{st} and the joint torques τ to the end-effector wrench F:

$$V_{st}^{s} = J_{st}^{s}(\theta)\dot{\theta} \qquad \tau = (J_{st}^{s})^{T}F_{s} \qquad \text{(spatial)}$$
$$V_{st}^{b} = J_{st}^{b}(\theta)\dot{\theta} \qquad \tau = (J_{st}^{b})^{T}F_{t} \qquad \text{(body)}.$$

If the manipulator kinematics is written using the product of exponentials formula, then the manipulator Jacobians have the form:

$$J_{st}^{s}(\theta) = \begin{bmatrix} \xi_{1} & \xi_{2}' & \cdots & \xi_{n}' \end{bmatrix} \qquad \begin{array}{l} \xi_{i}^{t} = \operatorname{Ad}_{\left(e^{\widehat{\xi}_{1}\theta_{1}} \cdots & e^{\widehat{\xi}_{i-1}\theta_{i-1}}\right)}^{\xi_{i}} \\ J_{st}^{b}(\theta) = \begin{bmatrix} \xi_{1}^{\dagger} & \cdots & \xi_{n-1}^{\dagger} & \xi_{n}^{\dagger} \end{bmatrix} \qquad \begin{array}{l} \xi_{i}^{\dagger} = \operatorname{Ad}_{\left(e^{\widehat{\xi}_{i}\theta_{i}} \cdots & e^{\widehat{\xi}_{n}\theta_{n}}g_{st}(0)\right)}^{-1} \\ \left(e^{\widehat{\xi}_{i}\theta_{i}} \cdots & e^{\widehat{\xi}_{n}\theta_{n}}g_{st}(0)\right)^{\xi_{i}}. \end{array}$$

7 / 6

Recall

- Robotic dynamics: deriving the equation of motion including q, \dot{q}, \ddot{q} and τ
- Forward dynamics: find joint accelerations
 - $^\circ$ Given q , \dot{q} and τ , find \ddot{q}
- Inverse dynamics: find joint forces and torques
 - $^\circ$ Given q,\dot{q} and $\ddot{q},$ find τ
- Two approaches for solving robot dynamics problem.

1. Lagrange's equations

- ° Energy-based
- Determine and exploit structural properties of the dynamics

2. Newton-Euler equations

- \circ Rely on f = ma
- Often used for numerical solution of forward/inverse dynamics

Chapter 6 Hand Dynamics and Control	Robotic Dymanics 8 / 69	9
1.	The equations of motion for a mechanical system with Lagrangian $L = T(q, \dot{q}) - V(q)$ satisfies Lagrange's equations:	
 Lagrange's equation 	$\frac{d}{dt}\frac{\partial L}{\partial \dot{q}_i} - \frac{\partial L}{\partial q_i} = \Upsilon_i,$	
	where $q \in \mathbb{R}^n$ is a set of generalized coordinates for the system and $\Upsilon \in \mathbb{R}^n$ represents the vector of generalized external forces.	
 Newton-Euler equations 	The equations of motion for a rigid body with configuration $g(t) \in SE(3)$ are given by the Newton-Euler equations:	
$\circ m$ mass of the body assume origin of {b} =CoM	$\begin{bmatrix} r & r & 0 \end{bmatrix} \begin{bmatrix} r & b \end{bmatrix} \begin{bmatrix} r & b \end{bmatrix} \begin{bmatrix} r & b \end{bmatrix}$	
• F^b : total force and moment acting on the body	$\begin{bmatrix} mI & 0\\ 0 & \mathcal{I} \end{bmatrix} \begin{bmatrix} v^*\\ \dot{\omega}^b \end{bmatrix} + \begin{bmatrix} \omega^* \times mv^*\\ \omega^b \times \mathcal{I}\omega^b \end{bmatrix} = F^b,$	
$^\circmv^b$: linear momentum of the body	where m is the mass of the body \mathcal{T} is the inertial tensor and	
$^\circ {\cal I}\omega^b$: angular momentum of the body	$V^{b} = (v^{b}, \omega^{b})$ and F^{b} represent the instantaneous body velocity and applied body wrench.	

- Lagrange's equation for openchain robot manipulator
- 3. The equations of motion for an open-chain robot manipulator can be written as

慣性力+遠心力・コリオリ力+ポテンシャルエネルギーに伴う力 =関節に加えられるトルクとそれ以外の力

 $M(\theta)\ddot{\theta} + C(\theta,\dot{\theta})\dot{\theta} + N(\theta,\dot{\theta}) = \tau$

Grasp & manipulation

Definition 5.2. Force-closure grasp

A grasp is a *force-closure* grasp if given any external wrench $F_e \in \mathbb{R}^p$ applied to the object, there exist contact forces $f_c \in FC$ such that

$$Gf_c = -F_e.$$

Definition of force closure

Definition 5.3. Internal forces

If $f_N \in \mathcal{N}(G) \cap FC$, then f_N is an internal force. If $f_N \in \mathcal{N}(G)$ and $f_N \in int(FC)$, then it is called a *strictly internal force*.

Definition of internal forces

$$J_h(\theta, x_o)\dot{\theta} = G^T(\theta, x_o)\dot{x}_o$$

Grasp constraints

Relationship between forces and velocities

Contents of This Talk

• Recall

• Lagrange's Equations with Constraints

- Pfaffian constraints
- $^{\circ}$ Lagrange multipliers
- ° Lagrange-d'Alembert formulation
- The Nature of nonholonomoic constraints
- Robot Hand Dynamics
- Redundant and Nonmanipulable Robot Systems
- Kinematics and Statics of Tendon Actuation
- Control of Robot Hand

11 / 69

Constraints

- A constraint restricts the motion of the mechanical system by limiting the set of paths which the system can follow.
- e.g. An idealized planar pendulum $\,q\,=\,(x,y)\,\in\,\mathbb{R}^2$
- All trajectories of the particles must satisfy the *algebraic constraint*:

$$x^2 + y^2 = l^2$$

• This constraint acts via *constraint forces*, which modify the motion to insure the constraint is always satisfied.

Holonomic constraint vs. nonholonomic constraint

Constraints

- Holonomic constraint vs. nonholonomic constraint
- Let's explain simply using some mechanical system examples with constraints

- Configuration space can be represented by vector:

 (x, y, θ) ∈ ℝ³
- These four joints always satisfy this equation:

 $\dot{y} - \dot{x} \cdot tan(heta) = 0$

- (Constraint involves velocity)
- It's a *nonholonomic* constraint this system could move between two arbitrary states with some constraint of velocity.

13 / 69

Constraints

• Holonomic constraint vs. nonholonomic constraint

Planar four-bar linkage

- Configuration space can be represented by vector:

 (θ₁, θ₂, θ₃, θ₄) ∈ ℝ⁴
- These four joints always satisfy these equations: $L_1 \cos \theta_1 + L_2 \cos(\theta_1 + \theta_2) + \dots + L_4 \cos(\theta_1 + \dots + \theta_4) = 0,$ $L_1 \sin \theta_1 + L_2 \sin(\theta_1 + \theta_2) + \dots + L_4 \sin(\theta_1 + \dots + \theta_4) = 0,$ $\theta_1 + \theta_2 + \theta_3 + \theta_4 - 2\pi = 0.$
- Degree of Freedom: one
- It's a *holonomic* constraint because it reduces degrees of freedom in the system

14 / 69

Holonomic/Nonholonomic Constraint

• If we set

- $\circ n$: dimensions of configuration space $q = (q_1, ..., q_n)$
- $\circ k$: number of independent constraints
- A question: whether the system could be moved between two arbitrary states without violating the velocity constraint?
- *Holonomic constraints* can be represented locally as algebraic constraints:

$$h(q) = 0, h : \mathbb{R}^n \to \mathbb{R}^k$$

° Answer: No

• Nonholonomic constraints can be represented as

 $h(q,\dot{q})=0$

• Answer: Yes

Holonomic constraint

• *Holonomic constraints* can be represented locally as algebraic constraints:

$$h(q) = 0, h : \mathbb{R}^n \to \mathbb{R}^k$$

• And the matrix
$$\frac{\partial h}{\partial q} = \begin{bmatrix} \frac{\partial h_1}{\partial q_1} & \cdots & \frac{\partial h_1}{\partial q_n} \\ & \ddots & \\ \frac{\partial h_k}{\partial q_1} & \cdots & \frac{\partial h_k}{\partial q_n} \end{bmatrix}$$
 is full row rank

• Constraint force
$$\Gamma = \frac{\partial h}{\partial q}^T \lambda$$
,

° Constraint forces do no work (will be explained later)

Pfaffian constraint

• *Pfaffian constraint*: generally we write velocity constraints as:

$$A(q)\dot{q}=0,~~$$
 where $~A(q)\in \mathbb{R}^{k imes n}~$ represents a set of k velocity constraints.

• This is the form of However, if there exist a vector-valued function $h: Q \to \mathbb{R}^k$ such that

°
$$A(q)\dot{q} = 0 \qquad \Longleftrightarrow \qquad \frac{\partial h}{\partial q}\dot{q} = 0.$$

• Pfaffian constraint is integrable

• Pfaffian constraint is equivalent to a holonomic constraint

- Otherwise, pfaffian constraint which is not integrable is an example of a non-holonomic constraint (not all).
- Constraint forces $\ \Gamma = A^T(q)\lambda,$

- Goal: derive the equations of motion for a mechanical system with configuration $q \in \mathbb{R}^n$ subject to a set of *Pfaffian constraints*.
 - ° Mechanical system: constraints are everywhere smooth and linearly
 - $^{\circ}$ Lagrangian: $L(q,\dot{q})$ kinetic energy minus potential energy
 - \circ Constraint: $A(q)\dot{q} = 0$ $A(q) \in \mathbb{R}^{k \times n}$.
- Let's write the equations of motion considering the constraint can affects the motion additionally:

$$\frac{d}{dt}\frac{\partial L}{\partial \dot{q}} - \frac{\partial L}{\partial q} + A^{T}(q)\lambda - \Upsilon = 0,$$

Constraint Nonconservative and forces externally applied forces

• $\lambda_i, \dots, \lambda_k$: relative magnitudes of constraint forces, also called *Lagrange multipliers*

- 3 Steps for calculating the equation of motion with constraints
 - ① Write the equations of motion (done, but Lagrange multipliers are unknown)
 - 2 Solve these multipliers because each λ_i will be a function with q, \dot{q}, Υ
 - ③ Substituting them back into the equations of motion
- We will show how to solve the multipliers λ in (2):
 - Differentiate the constraint equation $A(q)\dot{q} = 0$ (6.3) $\Rightarrow A(q)\ddot{q} + \dot{A}(q)\dot{q} = 0$ (6.3.1)
 - Write Lagrange's equations like this $M(q)\ddot{q} + C(q,\dot{q})\dot{q} + N(q,\dot{q}) + A^T(q)\lambda = F$, (6.5)
 - $^{\circ}$ Solve (6.5) for \ddot{q} and substitute into (6.3.1), and we will get

$$(AM^{-1}A^T)\lambda = AM^{-1}(F - C\dot{q} - N) + \dot{A}\dot{q},$$

If constraints are independent, this matrix is full rank

• So finally
$$\lambda = (AM^{-1}A^T)^{-1} \left(AM^{-1}(F - C\dot{q} - N) + \dot{A}\dot{q} \right).$$

- Configuration $\ q = (x,y) \in \mathbb{R}^2$

• Pfaffian constraint $\begin{bmatrix} x & y \end{bmatrix} \begin{vmatrix} \dot{x} \\ \dot{y} \end{vmatrix} = 0$

- Constraint $x^2 + y^2 = l^2$
- Write the equations of motion
- 2 Solve these multipliers
- Substituting them back
 into the equations of
 motion
- No constraint Lagrangian $L(q, \dot{q}) = \frac{1}{2}m(\dot{x}^2 + \dot{y}^2) mgy.$ • Substitude these formulation into $\frac{d}{dt}\frac{\partial L}{\partial \dot{q}} - \frac{\partial L}{\partial q} + A^T(q)\lambda = 0,$ • So Lagrangian with constraint will be: $\begin{bmatrix} m & 0 \\ 0 & m \end{bmatrix} \begin{bmatrix} \ddot{x} \\ \ddot{y} \end{bmatrix} + \begin{bmatrix} 0 \\ mg \end{bmatrix} + \begin{bmatrix} x \\ y \end{bmatrix} \lambda = 0.$ Unknown, let's move to step (2)

Forces that move Forces against the pendulum constraints

$$\backslash$$

θ

y

mg

<u>19 / 69</u>

 \mathcal{X}

20 / 69

Dynamics with Constraints

- Write the equations of motion
- **2** Solve these multipliers
- ③ Substituting them back into the equations of motion
- Solve Lagrange Multipliers using this:

$$\begin{split} \lambda &= (AM^{-1}A^T)^{-1} \left(AM^{-1}(Q - C\dot{q} - N) - \dot{A}\dot{q} \right) \\ &= \frac{m}{x^2 + y^2} (-gy - \dot{x}^2 - \dot{y}^2) = -\frac{m}{l^2} (gy + \dot{x}^2 + \dot{y}^2), \end{split}$$

- ① Write the equations of motion
- ② Solve these multipliers
- Finally the equations of motion are:
- 3 Substituting them back into the equations of motion

$$\begin{bmatrix} m & 0 \\ 0 & m \end{bmatrix} \begin{bmatrix} \ddot{x} \\ \ddot{y} \end{bmatrix} + \begin{bmatrix} 0 \\ mg \end{bmatrix} - \frac{1}{l^2} \begin{bmatrix} x \\ y \end{bmatrix} \left(mgy + m(\dot{x}^2 + \dot{y}^2) \right) = 0.$$

$$\begin{bmatrix} n & 0 \\ 0 & m \end{bmatrix} \begin{bmatrix} \ddot{x} \\ \ddot{y} \end{bmatrix} + \begin{bmatrix} 0 \\ mg \end{bmatrix} + \begin{bmatrix} x \\ y \end{bmatrix} \lambda = 0.$$
$$-\frac{m}{m}(qy + \dot{x}^2 + y)^2 + \frac{m}{m}(qy + \dot{y}^2 + y)^2 + \frac{m}{m}(qy + y)^2 + \frac{m}{m}(q$$

 $\neg -\frac{1}{l^2}(gy + \dot{x}^2 + \dot{y}^2)$

$$\begin{array}{c} & y \\ & & & \\ & & \\ & & \\ & & & \\ & & \\ & & \\ & & & \\ & & \\ & & \\ & & & \\$$

21 / 69

- ① Write the equations of motion
- $\begin{bmatrix} m & 0 \\ 0 & m \end{bmatrix} \begin{bmatrix} \ddot{x} \\ \ddot{y} \end{bmatrix} + \begin{bmatrix} 0 \\ mg \end{bmatrix} \frac{1}{l^2} \begin{bmatrix} x \\ y \end{bmatrix} \left(mgy + m(\dot{x}^2 + \dot{y}^2) \right) = 0.$
- 2 Solve these multipliers
- ③ Substituting them back into the equations of motion
- This is a second-order differential equation in two variables *x*, *y*
- But system only has one degree of freedom
- Thus, we have increased the number of variables required to represent the motion of the system.
- Additionally, we can obtain constraint force: tension *T* in the rod:

Tension =
$$\left\| \begin{bmatrix} x \\ y \end{bmatrix} \lambda \right\| = \frac{mg}{l}y + \frac{m}{l}(\dot{x}^2 + \dot{y}^2).$$

mq

y

23 / 69

Lagrange-D'Alembert Equation

This example can show that constraint forces do no work

- D'Alembert's principle: constraint forces do no work for any instantaneous motion which satisfies the constraints.
 - \circ Given configuration $q \in \mathbb{R}^n$,

• Virtual displacement $\delta q \in \mathbb{R}^n$, an arbitrary infinitesimal displacement which satisfies the constraints $A(q)\delta q = 0$.

$$(A^T(q)\lambda) \cdot \delta q = 0$$

- The reason why we introduce D'Alembert's principle:
 - $^{\circ}$ Solving equations of motion without calculating constraint forces?
 - ° Obtain a more concise equation of the dynamics

$$\frac{d}{dt}\frac{\partial L}{\partial \dot{q}} - \frac{\partial L}{\partial q} + A^T(q)\lambda - \Upsilon = 0,$$

Constraint Nonconservative and forces externally applied forces

$$\left(\frac{d}{dt}\frac{\partial L}{\partial \dot{q}} - \frac{\partial L}{\partial q} - \Upsilon\right) \cdot \delta q = 0,$$

Lagrange equation can become this when Eliminating constraint force

24 / 69

Lagrange-D'Alembert Equation

• Let's use Lagrange-d'Alembert equation to solve the dynamics for a rolling disk

A rolling disk that rolls without slipping

Lagrangian will be.

- \circ Configuration $q = (x, y, \theta, \phi)$
- Velocity constraints

 $\dot{x} - \rho \cos \theta \dot{\phi} = 0$ $\dot{y} - \rho \sin \theta \dot{\phi} = 0$ or $A(q)\dot{q} = \begin{bmatrix} 1 & 0 & 0 & -\rho \cos \theta \\ 0 & 1 & 0 & -\rho \sin \theta \end{bmatrix} \dot{q} = 0.$

- $\circ au_{ heta}$: driving torque on the wheel
- $\circ \tau_{\phi}$: steering torque (about the vertical axis)
- $^{\circ}\mathcal{I}_{\infty}$:inertia about the horizontal (rolling) axis
- $\circ \ \mathcal{I}_{\in}$:inertia about the vertical axis

$$L(q,\dot{q}) = \frac{1}{2}m(\dot{x}^2 + \dot{y}^2) + \frac{1}{2}\mathcal{I}_{\infty}\dot{\theta}^{\in} + \frac{\infty}{\epsilon}\mathcal{I}_{\epsilon}\dot{\phi}^{\epsilon}. \quad \Leftrightarrow \ L(q,\dot{q}) = \frac{1}{2}(\dot{x}^2 + \dot{y}^2) + \frac{1}{2}\mathcal{I}_{\infty}\dot{\theta}^2 + \frac{1}{2}\mathcal{I}_{\epsilon}\dot{\phi}^2$$

- ① Write the equations of motion
- 2 Reduce the configuration
- ③ Further simplify the equation

- Virtual displacement $\delta q = (\delta x, \delta y, \delta \theta, \delta \phi)$
- Lagrange-d'Alembert equations

$$\left(\begin{bmatrix} m & 0 \\ m & \mathcal{I}_{\infty} \\ 0 & \mathcal{I}_{\epsilon} \end{bmatrix} \ddot{q} - \begin{bmatrix} 0 \\ 0 \\ \tau_{\theta} \\ \tau_{\phi} \end{bmatrix} \right) \cdot \delta q = 0 \quad \text{where} \quad \begin{bmatrix} 1 & 0 & 0 & -\rho \cos \theta \\ 0 & 1 & 0 & -\rho \sin \theta \end{bmatrix} \delta q = 0.$$

- ① Write the equations of motion
- **2** Reduce the configuration
- ③ Further simplify the equation

Virtual displacement
$$\ \delta q = (\delta x, \delta y, \delta heta, \delta \phi)$$

Lagrange-d'Alembert equations

$$\left(\begin{bmatrix}m & 0\\ m & \mathcal{I}_{\infty}\\ 0 & \mathcal{I}_{\epsilon}\end{bmatrix}\ddot{q} - \begin{bmatrix}0\\ 0\\ \tau_{\theta}\\ \tau_{\phi}\end{bmatrix}\right)\cdot\delta q = 0 \quad \text{where} \quad \begin{bmatrix}1 & 0 & 0 & -\rho\cos\theta\\ 0 & 1 & 0 & -\rho\sin\theta\end{bmatrix}\delta q = 0.$$

 \Downarrow From constraint we can solve

- Equation can be written without δx , δy • $\begin{bmatrix} 0 & 0 \\ m\rho\cos\theta & m\rho\sin\theta \end{bmatrix} \begin{bmatrix} \ddot{x} \\ \ddot{y} \end{bmatrix} + \begin{bmatrix} \mathcal{I}_{\infty} & 0 \\ 0 & \mathcal{I}_{\epsilon} \end{bmatrix} \begin{bmatrix} \ddot{\theta} \\ \ddot{\phi} \end{bmatrix} - \begin{bmatrix} \tau_{\theta} \\ \tau_{\phi} \end{bmatrix}) \cdot \begin{bmatrix} \delta\theta \\ \delta\phi \end{bmatrix} = 0,$
- Since $\delta\theta, \delta\phi$ are free, the dynamics become:

$$\begin{bmatrix} 0 & 0 \\ m\rho\cos\theta & m\rho\sin\theta \end{bmatrix} \begin{bmatrix} \ddot{x} \\ \ddot{y} \end{bmatrix} + \begin{bmatrix} \mathcal{I}_{\infty} & 0 \\ 0 & \mathcal{I}_{\epsilon} \end{bmatrix} \begin{bmatrix} \ddot{\theta} \\ \ddot{\phi} \end{bmatrix} = \begin{bmatrix} \tau_{\theta} \\ \tau_{\phi} \end{bmatrix}$$

- ① Write the equations of motion
- 2 Reduce the configuration
- ③ Further simplify the equation

We have dynamics equation:

 $\begin{bmatrix} 0 & 0 \\ m\rho\cos\theta & m\rho\sin\theta \end{bmatrix} \begin{bmatrix} \ddot{x} \\ \ddot{y} \end{bmatrix} + \begin{bmatrix} \mathcal{I}_{\infty} & 0 \\ 0 & \mathcal{I}_{\epsilon} \end{bmatrix} \begin{bmatrix} \ddot{\theta} \\ \ddot{\phi} \end{bmatrix} = \begin{bmatrix} \tau_{\theta} \\ \tau_{\phi} \end{bmatrix}$

- We can eliminate \dot{x} , \dot{y} and \ddot{x} , \ddot{y} by differentiating the constraints $\dot{x} - \rho \cos \theta \dot{\phi} = 0$ $\dot{y} - \rho \sin \theta \dot{\phi} = 0$ $\ddot{y} = \rho \sin \theta \ddot{\phi} + \rho \cos \theta \dot{\phi}$, $\ddot{y} = \rho \sin \theta \ddot{\phi} + \rho \cos \theta \dot{\phi}$,
- Finally, it's second-order differential equation in heta and ϕ

$$\begin{bmatrix} \mathcal{I}_{\infty} & 0\\ 0 & \mathcal{I}_{\in} + \Uparrow \rho^{\in} \end{bmatrix} \begin{bmatrix} \ddot{\theta}\\ \ddot{\phi}\\ \end{bmatrix} = \begin{bmatrix} \tau_{\theta}\\ \tau_{\phi} \end{bmatrix},$$

- ① Write the equations of motion
- 2 Reduce the configuration
- ③ Further simplify the equation

- Let's summarize this rolling disk dynamics (a nonholonomic system).
- Given the trajectory of θ and ϕ , we can determine the trajectory of the disk as it rolls along the plane.
- The equation of motion is 1 + 2
 - 1. A second-order equations in a reduced set of variables plus

$$\begin{bmatrix} \mathcal{I}_{\infty} & 0\\ 0 & \mathcal{I}_{\in} + \ \uparrow \rho^{\in} \end{bmatrix} \begin{bmatrix} \ddot{\theta}\\ \ddot{\phi} \end{bmatrix} = \begin{bmatrix} \tau_{\theta}\\ \tau_{\phi} \end{bmatrix},$$

2. A set of first-order equations

$$\dot{x} = \rho \cos \theta \dot{\phi}$$
$$\dot{y} = \rho \sin \theta \dot{\phi}.$$

- Let's wrap it up with mathematical formulations
- Goal: get a more explicit description of the dynamics

• Lagrange-d'Alembert equation $\left(\frac{d}{dt}\frac{\partial L}{\partial \dot{q}} - \frac{\partial L}{\partial q} - \Upsilon\right) \cdot \delta q = 0$, where $\delta q \in \mathbb{R}^n$ satisfies $A(q)\delta q = 0$.

• Rewrite these:

 $A(q) = \begin{bmatrix} A_1(q) & A_2(q) \end{bmatrix}, \quad q = (q_1, q_2) \in \mathbb{R}^{n-k} \times \mathbb{R}^k$

 $^\circ$ So that we can use ∂q_1 to eliminate $\,\partial q_2$. (∂q_1 is free or unconstrainted)

$$A(q) \cdot \delta q = 0 \qquad \Longleftrightarrow \qquad \delta q_2 = -A_2^{-1}(q)A_1(q)\delta q_1,$$

$$\begin{pmatrix} \frac{d}{dt} \frac{\partial L}{\partial \dot{q}} - \frac{\partial L}{\partial q} - \Upsilon \end{pmatrix} \cdot \delta q \\ = \left(\frac{d}{dt} \frac{\partial L}{\partial \dot{q}_1} - \frac{\partial L}{\partial q_1} - \Upsilon_1 \right) \cdot \delta q_1 + \left(\frac{d}{dt} \frac{\partial L}{\partial \dot{q}_2} - \frac{\partial L}{\partial q_2} - \Upsilon_2 \right) \cdot \delta q_2 \\ = \left(\frac{d}{dt} \frac{\partial L}{\partial \dot{q}_1} - \frac{\partial L}{\partial q_1} - \Upsilon_1 \right) \cdot \delta q_1 + \left(\frac{d}{dt} \frac{\partial L}{\partial \dot{q}_2} - \frac{\partial L}{\partial q_2} - \Upsilon_2 \right) \cdot (-A_2^{-1}A_1) \delta q_1,$$

$$\Rightarrow \left(\frac{d}{dt} \frac{\partial L}{\partial \dot{q}_1} - \frac{\Omega}{\partial q_1} - \Upsilon_1 \right) - A_1^T A_2^{-T} \left(\frac{d}{dt} \frac{\partial L}{\partial \dot{q}_2} - \frac{\partial L}{\partial q_2} - \Upsilon_2 \right) = 0.$$

 $^{\circ}$ We can eliminate $\dot{q_2}$, $\ddot{q_2}$ using the constraint $\dot{q_2} = -A_2^{-1}A_1\dot{q_1}$

Nonholonomic System

- When we calculate the dynamics for a mechanical system with *nonholonomic* system
- Wrong: directly substitute the constraints to the equations of motion to eliminate the constraints
- For example:

 \circ Configuration $q = (r, s) \in \mathbb{R}^2 \times \mathbb{R}$

- \circ Constraints $\dot{s} + a^T(r)\dot{r} = 0$ $a(r) \in \mathbb{R}^2$, (nonholonomic)
- Lagrangian $L_c(r, \dot{r}) = L(r, \dot{r}, -a^T(r)\dot{r})$. (for simplicity, assume it doesn't depend on s)
- Substitute Lagrangian to the Lagrange-d'Alembert equation

$$\frac{d}{dt}\frac{\partial L_c}{\partial \dot{r}_i} - \frac{\partial L_c}{\partial r_i} = 0 \qquad i = 1, 2. \quad \Rightarrow \quad \frac{d}{dt}\left(\frac{\partial L}{\partial \dot{r}_i} - a_i(r)\frac{\partial L}{\partial \dot{s}}\right) - \left(\frac{\partial L}{\partial r_i} - \frac{\partial L}{\partial \dot{s}}\sum_j \frac{\partial a_j}{\partial r_i}\dot{r}_j\right) = 0$$

◦ Rearranging terms and we obtain:

$$\left(\frac{d}{dt}\frac{\partial L}{\partial \dot{r}_i} - \frac{\partial L}{\partial r_i}\right) - a_i(r)\left(\frac{d}{dt}\frac{\partial L}{\partial \dot{s}} - \frac{\partial L}{\partial s}\right) = \frac{\partial L}{\partial \dot{s}}\left(\dot{a}_i(r) - \sum_j \frac{\partial a_j}{\partial r_i}\dot{r}_i\right).$$

Nonholonomic System

- When we calculate the dynamics for a mechanical system with *nonholonomic* system
- Wrong: directly substitute the constraints to the equations of motion to eliminate the constraints
- For example:
 - $^{\circ}$ Let's look at the final equations

$$\begin{pmatrix} \frac{d}{dt} \frac{\partial L}{\partial \dot{r}_i} - \frac{\partial L}{\partial r_i} \end{pmatrix} - a_i(r) \left(\frac{d}{dt} \frac{\partial L}{\partial \dot{s}} - \frac{\partial L}{\partial s} \right) = \frac{\partial L}{\partial \dot{s}} \left(\dot{a}_i(r) - \sum_j \frac{\partial a_j}{\partial r_i} \dot{r}_i \right).$$
Exactly Lagrange-d'Alembert equation Spurious terms

 If we directly substitute the constraints to the equations of motion, we will get these spurious terms, the final dynamic equations are wrong

Ο

Holonomic System

- When we calculate the dynamics for a mechanical system with *nonholonomic* system
- Wrong: directly substitute the constraints to the equations of motion to eliminate the constraints
- Is it still wrong for a *holonomic* system?

 $^{\circ}$ We know the constraint is integrable, so that there exists h(r) such that

$$\dot{s} + a^{T}(r)\dot{r} = 0 \qquad a(r) \in \mathbb{R}^{2}, \qquad \Rightarrow \quad a_{i}(r) = \frac{\partial h}{\partial r_{i}}.$$
So that for the right side $\left(\frac{d}{dt}\frac{\partial L}{\partial \dot{r}_{i}} - \frac{\partial L}{\partial r_{i}}\right) - a_{i}(r)\left(\frac{d}{dt}\frac{\partial L}{\partial \dot{s}} - \frac{\partial L}{\partial s}\right) = \frac{\partial L}{\partial \dot{s}}\left(\dot{a}_{i}(r) - \sum_{j}\frac{\partial a_{j}}{\partial r_{i}}\dot{r}_{i}\right).$

$$\frac{\partial L}{\partial \dot{s}}(\dot{a}_{i}(r) - \sum_{j}\frac{\partial a_{j}}{\partial r_{i}}\dot{r}_{i}) = \frac{\partial L}{\partial \dot{s}}\left(\sum \frac{\partial^{2}h}{\partial r_{i}\partial r_{j}}\dot{r}_{j} - \sum \frac{\partial^{2}h}{\partial r_{j}\partial r_{i}}\dot{r}_{i}\right), = \mathbf{0}$$

 So for a *holonomic* system, if we substitute the constraints to the equations of motion, we can still get a correct equations of motion

Contents of This Talk

- Recall some previous knowledge
- Lagrange's Equations with Constraints
- Robot Hand Dynamics
 - Derivation and properties
 - $^{\rm o}$ Internal forces
 - Other robot systems
- Redundant and Nonmanipulable Robot Systems
- Kinematics and Statics of Tendon Actuation
- Control of Robot Hand

Dynamics of the **fingers** (using Lagrangian)

$$M_f(\theta)\ddot{\theta} + C_f(\theta,\dot{\theta})\dot{\theta} + N_f(\theta,\dot{\theta}) = \tau,$$

Joint angles for all fingers: $\theta = (\theta_{f_1}, \dots, \theta_{f_k}) \in \mathbb{R}^n$ Joint torques for all fingers: $\tau \in \mathbb{R}^n$

$$M_{f} = \begin{bmatrix} M_{f_{1}} & 0 \\ & \ddots & \\ 0 & & M_{f_{k}} \end{bmatrix} \quad C_{f} = \begin{bmatrix} C_{f_{1}} & 0 \\ & \ddots & \\ 0 & & C_{f_{k}} \end{bmatrix} \quad N_{f} = \begin{bmatrix} N_{f_{1}} \\ \vdots \\ N_{f_{k}} \end{bmatrix}.$$

Dynamics of the **object** (Newton-Euler equation)

 $\begin{bmatrix} mI & 0 \\ 0 & \mathcal{I} \end{bmatrix} \begin{bmatrix} \dot{v}^b \\ \dot{\omega}^b \end{bmatrix} + \begin{bmatrix} \omega^b \times mv^b \\ \omega^b \times \mathcal{I}\omega^{\lfloor} \end{bmatrix} = F^b,$

In Newton-Euler method: object $x_o = (p, R) \in SE(3)$

If object is subject to gravity alone:

$$\begin{bmatrix} mI & 0 \\ 0 & \mathcal{I} \end{bmatrix} \dot{V}^b + \begin{bmatrix} m\widehat{\omega}^b & 0 \\ 0 & \frac{1}{2}(\widehat{\omega}^b\mathcal{I} - \mathcal{I}\widehat{\omega}^{\lfloor}) \end{bmatrix} V^b + \begin{bmatrix} R^T(m\vec{g}) \\ 0 \end{bmatrix} = 0,$$

Dynamics of the **object** (To apply Lagrangian-d'Alembert equation)

We have to convert object from SE(3) to local coordinate, which is: $x_o = (p, R) \in SE(3) \Rightarrow x \in \mathbb{R}^6$ So that the object dynamics can be written as:

$$M_o(x)\ddot{x} + C_o(x,\dot{x})\dot{x} + N_o(x,\dot{x}) = 0,$$

Grasp constraints

* Chapter 5 5.5 Grasp Constraints

 $J_h(\theta, x)\dot{\theta} = G^T(\theta, x)\dot{x},$ It is the relationship between velocity and object velocity

It's the relationship between the finger

Three assumptions of grasping

- The grasp is force-closure and manipulable 1)
- The hand Jacobian is invertible 2)
- The contact forces remain in the friction cone at all times 3)

Apply steps from last section to using Lagrangian-d'Alembert equation

- $\textcircled{1} \quad \text{Write the equations of motion} \\$
- 2 Reduce the configuration
- ③ Further simplify the equation

Dynamics of the **system** (Apply Lagrangian-d'Alembert equation)

• Configuration: $q = (\theta, x)$

Recall Lagrangian-d'Alembert equation
$$\left(\frac{d}{dt}\frac{\partial L}{\partial \dot{q}} - \frac{\partial L}{\partial q} - \Upsilon\right) \cdot \delta q = 0,$$
$$A(q)\delta q = 0.$$

• Lagrangian:
$$L = \frac{1}{2}\dot{\theta}^T M_f \dot{\theta} + \frac{1}{2}\dot{x}^T M_o \dot{x} - V_f(\theta) - V_o(x),$$

• Virtual displacement:
$$\delta q = (\delta \theta, \delta x)$$

• Constraint:
$$J_h(\theta, x)\dot{\theta} = G^T(\theta, x)\dot{x}, \ [-J_h \quad G^T]\begin{bmatrix}\dot{\theta}\\\dot{x}\end{bmatrix} = 0$$

• Lagrange-d'Alembert equations:

$$\begin{pmatrix} \frac{d}{dt} \frac{\partial L}{\partial \dot{q}} - \frac{\partial L}{\partial q} - \begin{bmatrix} \tau \\ 0 \end{bmatrix} \end{pmatrix} \cdot \delta q = \begin{bmatrix} \frac{d}{dt} \frac{\partial L}{\partial \dot{\theta}} - \frac{\partial L}{\partial \theta} - \tau \\ \frac{d}{dt} \frac{\partial L}{\partial \dot{x}} - \frac{\partial L}{\partial x} \end{bmatrix} \cdot \begin{bmatrix} \delta \theta \\ \delta x \end{bmatrix} \qquad \begin{bmatrix} -J_h & G^T \end{bmatrix} \begin{bmatrix} \delta \theta \\ \delta x \end{bmatrix} = 0$$

$$\delta \theta = J_h^{-1} G^T \delta x$$

$$= \left(\frac{d}{dt} \frac{\partial L}{\partial \dot{\theta}} - \frac{\partial L}{\partial \theta} - \tau \right) \cdot \left(J_h^{-1} G^T \delta x \right) + \left(\frac{d}{dt} \frac{\partial L}{\partial \dot{x}} - \frac{\partial L}{\partial x} \right) \cdot \delta x$$

$$= G J_h^{-T} \left(\frac{d}{dt} \frac{\partial L}{\partial \dot{\theta}} - \frac{\partial L}{\partial \theta} - \tau \right) \cdot \delta x + \left(\frac{d}{dt} \frac{\partial L}{\partial \dot{x}} - \frac{\partial L}{\partial x} \right) \cdot \delta x,$$

37 / 69

Equation of Motion

Apply steps from last section to using Lagrangian-d'Alembert equation

- 1 Write the equations of motion
- 2 Reduce the configuration
- ③ Further simplify the equation

Dynamics of the **system** (Apply Lagrangian-d'Alembert equation)

- Configuration: $q = (\theta, x)$
- Lagrangian: $L = \frac{1}{2}\dot{\theta}^T M_f \dot{\theta} + \frac{1}{2}\dot{x}^T M_o \dot{x} V_f(\theta) V_o(x),$
- Virtual displacement: $\delta q = (\delta \theta, \delta x)$
- Lagrange-d'Alembert equations:

 $\left(\frac{d}{dt}\frac{\partial L}{\partial \dot{q}} - \frac{\partial L}{\partial q} - \begin{bmatrix} \tau \\ 0 \end{bmatrix}\right) \cdot \delta q = GJ_h^{-T} \left(\frac{d}{dt}\frac{\partial L}{\partial \dot{\theta}} - \frac{\partial L}{\partial \theta} - \tau\right) \cdot \delta x + \left(\frac{d}{dt}\frac{\partial L}{\partial \dot{x}} - \frac{\partial L}{\partial x}\right) \cdot \delta x, \quad = \mathbf{0}$

• Since δx is free:

$$\left(\frac{d}{dt}\frac{\partial L}{\partial \dot{x}} - \frac{\partial L}{\partial x}\right) + GJ_h^{-T}\left(\frac{d}{dt}\frac{\partial L}{\partial \dot{\theta}} - \frac{\partial L}{\partial \theta}\right) = GJ_h^{-T}\tau$$

Apply steps from last section to using Lagrangian-d'Alembert equation

- ① Write the equations of motion
- 2 Reduce the configuration
- **③** Further simplify the equation

Dynamics of the **system** (Apply Lagrangian-d'Alembert equation)

Furthermore, eliminate $\dot{\theta}$, $\ddot{\theta}$, and obtain the final equation of motion:

$$\left(\frac{d}{dt}\frac{\partial L}{\partial \dot{x}} - \frac{\partial L}{\partial x}\right) + GJ_h^{-T}\left(\frac{d}{dt}\frac{\partial L}{\partial \dot{\theta}} - \frac{\partial L}{\partial \theta}\right) = GJ_h^{-T}\tau.$$

$$\tilde{M}(q)\ddot{x} + \tilde{C}(q,\dot{q})\dot{x} + \tilde{N}(q,\dot{q}) = F,$$

$$\tilde{M} = M_o + GJ_h^{-T} M_f J_h^{-1} G^T$$
$$\tilde{C} = C_o + GJ_h^{-T} \left(C_f J_h^{-1} G^T + M_f \frac{d}{dt} \left(J_h^{-1} G^T \right) \right)$$
$$\tilde{N} = N_o + GJ_h^{-T} N_f$$
$$F = GJ_h^{-T} \tau.$$

Equation of Motion (Conclusion)

• Equation of motion for robot hand

$$\begin{split} \tilde{M}(q)\ddot{x} + \tilde{C}(q,\dot{q})\dot{x} + \tilde{N}(q,\dot{q}) &= F, \\ \tilde{M} &= M_o + GJ_h^{-T}M_fJ_h^{-1}G^T \\ \tilde{C} &= C_o + GJ_h^{-T}\left(C_fJ_h^{-1}G^T + M_f\frac{d}{dt}\left(J_h^{-1}G^T\right)\right) \\ \tilde{N} &= N_o + GJ_h^{-T}N_f \\ F &= GJ_h^{-T}\tau. \quad \text{If a grasp is force-closure, this term is internal forces} \end{split}$$

• Properties of the derived equation of motion (*Temporally Proof omitted*)

1.
$$\tilde{M}(q)$$
 is symmetric and positive definite.

2.
$$\tilde{\tilde{M}}(q) - 2\tilde{C}$$
 is a skew-symmetric matrix.

Finding Contact Force

- Goal: Find the instantaneous contact forces during motion.
- *Internal forces*: if a grasp is force-closure, then there exist contact forces which produce no net wrench on the object.
- In dynamics, internal forces F = GJ_h^{-T}τ maps joint torques into object forces.
 If J_h^{-T}τ ∈ N(G), no net wrench is generated
 But even if J_h^{-T}τ ∉ N(G), internal forces still exists due to those *constraint forces* which the Lagrange-d'Alembert equations eliminated.
- Recall full equation of motion with pfaffian constraints:

$$\frac{d}{dt}\frac{\partial L}{\partial \dot{q}} - \frac{\partial L}{\partial q} + A^{T}(q)\lambda - \Upsilon = 0, \qquad A(q) = \begin{bmatrix} -J_{h}(\theta, x) & G^{T}(\theta, x) \end{bmatrix}$$
$$\begin{bmatrix} M_{f} & 0 \\ 0 & M_{o} \end{bmatrix} \begin{bmatrix} \ddot{\theta} \\ \ddot{x} \end{bmatrix} + \begin{bmatrix} C_{f} & 0 \\ 0 & C_{o} \end{bmatrix} \begin{bmatrix} \dot{\theta} \\ \dot{x} \end{bmatrix} + \begin{bmatrix} N_{f} \\ N_{o} \end{bmatrix} + \begin{bmatrix} -J_{h}^{T} \\ G \end{bmatrix} \lambda = \begin{bmatrix} \tau \\ 0 \end{bmatrix} \qquad \begin{array}{c} \text{Lagrangian multiplier } \lambda: \\ \text{contact forces} \end{bmatrix}$$

Finding Contact Force

• Solve for Lagrange multiplier using results in *Section 1.2. Lagrange Multipliers*

$$\begin{bmatrix} M_f & 0\\ 0 & M_o \end{bmatrix} \begin{bmatrix} \ddot{\theta}\\ \ddot{x} \end{bmatrix} + \begin{bmatrix} C_f & 0\\ 0 & C_o \end{bmatrix} \begin{bmatrix} \dot{\theta}\\ \dot{x} \end{bmatrix} + \begin{bmatrix} N_f\\ N_o \end{bmatrix} + \begin{bmatrix} -J_h^T\\ G \end{bmatrix} \lambda = \begin{bmatrix} \tau\\ 0 \end{bmatrix}$$
$$\overline{M} \qquad \overline{C} \qquad \overline{N}$$
$$\lambda = (A\bar{M}^{-1}A^T)^{-1} \left(A\bar{M}^{-1}\left(\begin{bmatrix} \tau\\ 0 \end{bmatrix} - \bar{C}\dot{q} - \bar{N}\right) + \dot{A}\dot{q}\right).$$

- Another method to solve for constraint forces
 - \circ If J_h is invertible, directly using the joint acceleration.

$$\lambda = J_h^{-T} \left(\tau - M_f \ddot{\theta} - C_f \dot{\theta} - N_f \right).$$

Other Robot Systems

- Let's see some examples.
- Robot system subject to constrains of $J(q)\dot{\theta} = G^T(q)\dot{x}$ have dynamics with the same form and structure we introduced before.

Coordinated lifting

Other Robot Systems

Motoman robot performing a welding task Robot grasping a welding tool

Dynamics of the welding tool

$$M_{o}(x)\ddot{x} + C_{o}(x,\dot{x})\dot{x} + N_{o}(x,\dot{x}) = 0,$$

Dynamics of the system

- $g:Q \to \mathbb{R}^p$, Jacobian: $J(\theta) = rac{\partial g}{\partial \theta}$
- Kinematics: $J(\theta)\dot{\theta}=\dot{x},$
- Dynamics: $\tilde{M}(q)\ddot{x} + \tilde{C}(q,\dot{q})\dot{x} + \tilde{N}(q,\dot{q}) = F$,

$$\tilde{M} = M_o + J^{-T} M_f J^{-1}$$
$$\tilde{C} = C_o + J^{-T} \left(C_f J^{-1} + M_f \frac{d}{dt} \left(J^{-1} \right) \right)$$
$$\tilde{N} = N_o + J^{-T} N_f$$
$$F = J^{-T} \tau$$

Other Robot Systems

Hybrid position/force dynamics

Robot writing on a planar

- This kind of tasks consist of both a desired motion and a desired force
- Constraint: $h(\theta, x) = 0$

• Dynamics: $\tilde{M}(q)\ddot{x} + \tilde{C}(q,\dot{q})\dot{x} + \tilde{N}(q,\dot{q}) = F$,

$$\tilde{M} = GJ^{-T}M_f J^{-1}G^T$$
$$\tilde{C} = GJ^{-T} \left(C_f J^{-1}G^T + M_f \frac{d}{dt} \left(J^{-1}G^T \right) \right)$$
$$\tilde{N} = N_o + GJ^{-T}N_f$$
$$F = GJ^{-T}\tau.$$

Contents of This Talk

- Recall
- Lagrange's Equations with Constraints
- Robot Hand Dynamics
- Redundant and Nonmanipulable Robot Systems
 - Dynamics of redundant manipulator
 - Nonmanipulable grasps
 - Example: Two-fingered SCARA grasp
- Kinematics and Statics of Tendon Actuation
- Control of Robot Hand

Dynamics for These Robot Systems (Conclusion)

• How to analyze dynamics *redundant* and/or *nonmanipulable* robot systems subject to constraints?

• Constraints:
$$J_h(heta,x)\dot{ heta}=G^T(heta,x)\dot{x}$$

	Redundant	Nonmanipulable
What it is	 Constraints introduce <i>kinematic/actuator</i> <i>redundancy</i> into robot system. <i>Kinematic redundancy</i> :finger motions which do not affect object motion. <i>Actuator redundancy</i> : finger forces which do not affect object motion. i.e., Internal forces. 	 <i>Manipulable</i>: when arbitrary motions can be generated by fingers <i>Nonmanipulable</i>: when finger motion cannot achieve some motions of the individual contacts.
What J _h looks like	 <i>J_h</i> has a non-trivial null space, which describes those joint motions. 	 J_h is not full row rank J_h does not span the range of G^T
How to write equation of motion	Extend the constraints by brining K_h which spans the null space of J_h . $\underbrace{\begin{bmatrix} J_h \\ K_h \end{bmatrix}}_{\bar{J}_h} \dot{\theta} = \underbrace{\begin{bmatrix} G^T & 0 \\ 0 & I \end{bmatrix}}_{\bar{G}^T} \begin{bmatrix} \dot{x} \\ v_N \end{bmatrix}$	Rewrite the constraints by bringing H which spans the space of allowable object trajectories. $J_h \dot{\theta} = \underbrace{G^T H}_{\bar{G}^T} w$

47 / 69

Examples: Two-fingered SCARA grasp

• Write the basic grasp constraints:

Notice this $J_h(\theta)$ is not invertible

- i. Solve for redundancy
- ii. Solve for Nonmanipulable

Examples: i. Solve for Redundancy

• Define *K* where
$$\frac{\partial y}{\partial \theta} = K(\theta)$$
.
 \circ We define $h(\theta) = (\theta_{11} + \theta_{12} + \theta_{13}, \theta_{21} + \theta_{22} + \theta_{23})$
 \circ So that $K_1 = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}, K_2 = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 \end{bmatrix}$

• Expand the constraints:

- Notice we increased the internal variables to describe the internal motion. i.e. velocity \dot{y} .
- But it does not alter the nonmanipulable nature since J_h still does not span the range of G^T .

Examples: ii. Solve for Nonmanipulable

- Define the space of allowable object velocities
 - $W(\theta, x) = \{ \dot{x} \in \mathbb{R}^p : \exists \dot{\theta} \in \mathbb{R}^m \text{ with } J_h \dot{\theta} = G^T \dot{x} \}.$
 - \circ i.e. Object can move along $[0,1,0,0,0,0]^T$
 - \circ i.e. But object cannot move along $[0,0,0,0,1,0]^T$ (Rotating around Y-axis)
- Next, we construct a matrix $H(\theta, x) \in \mathbb{R}^{p \times l}$ using $W(\theta, x)$
 - \circ Every column of H is the allowing object velocity in W (basis) H =
- Rewrite grasp constraints:

$$10 \int \begin{bmatrix} J_{h1} & 0 \\ 0 & J_{h2} \\ \hline K_1 & K_2 \end{bmatrix} \dot{\theta} = \begin{bmatrix} G_1^T H' & 0 \\ G_2^T H' & 0 \\ \hline 0 & I \end{bmatrix} \begin{bmatrix} w' \\ \dot{y} \end{bmatrix}$$
Recall rewritten formulation
$$J_h \dot{\theta} = G^T H w \quad \dot{x} \in \mathbb{R}^p: \text{object velocity} \\ w \in \mathbb{R}^l: \text{object velocity in terms of the basis of } H$$

 $\in \mathbb{R}^p$: object velocity

Contents of This Talk

- Recall
- Lagrange's Equations with Constraints
- Robot Hand Dynamics
- Redundant and Nonmanipulable Robot Systems
- Kinematics and Statics of Tendon Actuation
 - Inelastic tendons
 - Elastic tendons
 - $^{\rm o}$ Analysis and control of tendon-driven fingers
- Control of Robot Hand

Tendon-Driven Finger

- Introduce a mechanism to carry forces from an actuator to the appropriate joint.
- Model the routing of each tendon by an *extension function*:

 $h_i: \mathbf{Q} \to \mathbb{R}$

 $^{\circ}$ It measures the displacement of tendon end and the joint angles of the finger

• i.e.
$$h_i(\theta) = l_i \pm r_{i1}\theta_1 \pm \cdots \pm r_{in}\theta_n$$

 l_i : Nominal extension (at $\theta = 0$)
 r_{ij} : radius of the *j*-th joint pulley
 h_1
 h_2
 h_3
 h_4
joint 1
 $joint 2$

<u>A simple tendon-driven finger</u> Consists of linkages, tendons, gears, and pulleys

Inelastic Tendons

- Introduce a mechanism to carry forces from an actuator to the appropriate joint.
- Model the routing of each tendon by an *extension function*:

 $h_i: \mathbf{Q} \to \mathbb{R}$

 $^{\circ}$ It measures the displacement of tendon end and the joint angles of the finger

Inelastic Tendons

• Finger examples and their extension functions

• Extension functions:

$$h_1(\theta) = l_1 + 2\sqrt{a^2 + b^2} \cos\left(\tan^{-1}\left(\frac{a}{b}\right) + \frac{\theta}{2}\right) - 2b \qquad \theta > 0$$
$$h_2(\theta) = l_2 + R\theta, \qquad \theta > 0.$$

• Extension functions:

$$h_2 = l_2 - R_1 \theta_1$$

 $h_3 = l_3 + R_1 \theta_1.$

$$h_1 = l_1 + 2\sqrt{a^2 + b^2} \cos\left(\tan^{-1}\left(\frac{a}{b}\right) + \frac{\theta_1}{2}\right) - 2b - R_2\theta_2 \qquad \theta_1 > 0.$$

$$h_4 = l_4 + R_1\theta_1 + R_2\theta_2$$

Planar tendon-driven finger

Inelastic Tendons

- Let's define the relationships between the tendon forces and the joint torques using tendon extension functions.
 - \circ Tendon extensions vectors with p tendons: $e = h(\theta) \in \mathbb{R}^p$
 - Define *coupling matrix:* $P(\theta) = \frac{\partial h^T}{\partial \theta}(\theta)$ mapping tendon forces and the joint torques • So $\dot{e} = \frac{\partial h}{\partial \theta}(\theta)\dot{\theta} = P^T(\theta)\dot{\theta}.$
- Since work done by the tendons must equal that done by the fingers (conservation of energy): τ = P(θ)f where f ∈ ℝ^p is the force applied to the tendons tends.
 Combined kinematics and dynamics:
 - $M(\theta)\ddot{\theta} + C(\theta,\dot{\theta})\dot{\theta} + N(\theta,\dot{\theta}) = P(\theta)f$

55 / 69

Inelastic Tendons

$$\tau = P(\theta) f$$
Joint Coupling Tendon
torques matrix forces

•
$$M(\theta)\ddot{\theta} + C(\theta,\dot{\theta})\dot{\theta} + N(\theta,\dot{\theta}) = P(\theta)f$$

- An example
 - $^{\circ}$ Extension function

$$h_{2} = l_{2} - R_{1}\theta_{1} \qquad h_{1} = l_{1} + 2\sqrt{a^{2} + b^{2}}\cos\left(\tan^{-1}\left(\frac{a}{b}\right) + \frac{\theta_{1}}{2}\right) - 2b - R_{2}\theta_{2} \qquad \theta_{1} > 0.$$

$$h_{3} = l_{3} + R_{1}\theta_{1}. \qquad h_{4} = l_{4} + R_{1}\theta_{1} + R_{2}\theta_{2}$$

• Coupling matrix

$$P(\theta) = \frac{\partial h^{T}}{\partial \theta} = \begin{bmatrix} -\sqrt{a^{2} + b^{2}} \sin(\tan^{-1}\left(\frac{a}{b}\right) + \frac{\theta_{1}}{2}) & -R_{1} & R_{1} & R_{1} \\ -R_{2} & 0 & 0 & R_{2} \end{bmatrix}$$

Elastic Tendons

• Applying a single spring element at the base of the tendon:

Planar finger with position-controlled elastic tendons • Extension functions

$$\begin{split} h_1 &= l_1 + r_{11}\theta_1 - r_{12}\theta_2 \\ h_2 &= l_2 - r_{21}\theta_1 \\ h_3 &= l_3 + r_{31}\theta_1 \\ h_4 &= l_4 - r_{41}\theta_1 + r_{42}\theta_2, \end{split}$$

• Coupling Matrix

$$P(\theta) = \frac{\partial h^{T}}{\partial \theta} = \begin{bmatrix} r_{11} & -r_{21} & r_{31} & -r_{41} \\ -r_{12} & 0 & 0 & r_{42} \end{bmatrix}$$

• We also want to establish the relationship between tendon extension and the joint torques using a *new* coupling matrix

Elastic Tendons

- Let's define the relationships between the tendon extension and the joint torques using a *new coupling matrix*.
- Extension of the tendon as commanded by the actuator: e_i
- Extension of the tendon due to the mechanism: $h_i(\theta)$
- Net force applied to tendons: $f_i = k_i(e_i + h_i(0) h_i(\theta))$
- Define K: diagonal matrix of tendon stiffnesses, where k_i is the stiffness of *i*-th tendon

$$f = K(e + h(0) - h(\theta))$$

• Write dynamics:

$$M(\theta) + C(\theta, \dot{\theta})\dot{\theta} + N(\theta, \dot{\theta}) + PK(h(\theta) - h(0)) = PKe$$

 $\begin{array}{lll} \mbox{Models the stiffness of the} & \mbox{New coupling} \\ \mbox{tendon network} & \mbox{matrix} \\ S(\theta) := PK(h(\theta) - h(0)) & Q := PK \end{array}$

Elastic Tendons

$$\tau = Qe, Q := PK$$
Joint New Tendon
torques coupling extension
matrix

Planar finger with position-controlled elastic tendons

- $M(\theta) + C(\theta, \dot{\theta})\dot{\theta} + N(\theta, \dot{\theta}) + PK(h(\theta) h(0)) = PKe$
- An example (top-right finger):

 $^{\circ}$ We already wrote the extension function h_1 , h_2 , h_3 , h_4 and coupling matrix P(heta)

 $\begin{array}{c} \circ \text{ Stiffness matrix }: \\ K = \begin{bmatrix} k_1 & 0 & 0 & 0 \\ 0 & k_2 & 0 & 0 \\ 0 & 0 & k_3 & 0 \\ 0 & 0 & 0 & k_4 \end{bmatrix} \\ \end{array} \begin{array}{c} \circ \text{ Overall stiffness:} \\ S(\theta) = PK(h(\theta) - h(0)) \\ = \begin{bmatrix} k_1 r_{11}^2 + k_2 r_{21}^2 + k_3 r_{31}^2 + k_4 r_{41}^2 & -k_1 r_{11} r_{12} - k_4 r_{41} r_{42} \\ -k_1 r_{11} r_{12} - k_4 r_{41} r_{42} & k_1 r_{12}^2 + k_4 r_{42}^2 \end{bmatrix} \theta$

• New coupling matrix that mapping joint torques and tendon extension

$$Q = PK = \begin{bmatrix} k_1 r_{11} & -k_2 r_{21} & k_3 r_{31} & -k_4 r_{41} \\ -k_1 r_{12} & 0 & 0 & k_4 r_{42} \end{bmatrix}$$

59 / 69

Control of Tendon-Driven Fingers

• First, define a tendon network is *force-closure*:

 \circ For any $\tau \in \mathbb{R}^n$ there exists a set of forces $f \in \mathbb{R}^p$ such that

 $P(\theta)f = \tau$ and $f_i > 0, i = 1, \dots, p$.

- So the necessary and sufficient condition is P be surjective and there exist a strictly positive vector of internal forces $f_N \in \mathbb{R}^p$, $f_{N,i} > 0$ such that $P(\theta) f_N = 0$.
- Verify the necessary number of tendons to construct a *force-closure* tendon network:
 - \circ "*N*+1" tendon configuration:
 - *N* tendons which generate torques in the opposite direction
 - 1 tendon which pulls on all of the joints in one direction
 - \circ *"2N"* tendon configuration:
 - 2 tendons to each joint (total N joints), acting in opposite directions

Control of Tendon-Driven Fingers

• Next, write the tendon forces for **inelastic** tendons:

• Also, let's move on to elastic tendons:

• We must solve the following equations:

 $P(\theta)Ke = \tau$ and $e_i + h_i(0) - h_i(\theta) > 0, i = 1, ..., p.$

• How to solve: assume tendon network is force-closure, there exists a vector of extensions $e_N \in \mathbb{R}^p$ such that $e_{N,i} > 0$ and $PKe_N = 0$, so we will choose very large e_N we can obtain: $e = (PK)^+ \tau + e_N$

Contents of This Talk

- Recall
- Lagrange's Equations with Constraints
- Robot Hand Dynamics
- Redundant and Nonmanipulable Robot Systems
- Kinematics and Statics of Tendon Actuation
- Control of Robot Hand
 - Extending controllers
 - Hierarchical control structures

Control

- Recall some definition in Chapter 4:
- *Position control*: given a designed trajectory, how should the joint torques be chosen to follow that trajectory?
 - $^{\circ}$ Desired motion: θ_d
 - $^{\circ}$ Actual motion: θ
 - \circ Error: $e = \theta_d \theta$
 - \circ Constant gain matrices: K_v , K_p
 - \circ Dynamics (without constraints): $M(\theta)\ddot{\theta} + C(\theta,\dot{\theta})\dot{\theta} + N(\theta,\dot{\theta}) = \tau$
 - \circ Computed torque control law: $au = M(heta) \left(\ddot{ heta}_d K_v \dot{e} K_p e \right) + C(heta, \dot{ heta}) \dot{ heta} + N(heta, \dot{ heta})$

$$\circ$$
 Computing torque $\tau = \underbrace{M(\theta)\ddot{ heta}_d + C\dot{ heta} + N}_{ au_{\mathrm{ff}}} + \underbrace{M(\theta)\left(-K_v\dot{e} - K_pe_{\mathrm{ff}}\right)}_{ au_{\mathrm{fb}}}$

loop control system

Control

• Here, we consider robot hand control as control problems with constraints

Goal	How to achieve?
i. Tracking a given object/workspace trajectory	Find joint torques which satisfy the tracking requirement
ii. Maintaining a desired internal force	Add sufficient internal forces to keep the contact forces inside the appropriate friction cones

• We derived dynamics of this kind of constrained system

 $M(q)\ddot{x} + C(q,\dot{q})\dot{x} + N(q,\dot{q}) = F = GJ^{-T}\tau_{t}$

 \circ Error: $e \coloneqq x - x_d$

• Let's achieve these two goal one by one

i. Tracking Trajectory

$$M(q)\ddot{x} + C(q,\dot{q})\dot{x} + N(q,\dot{q}) = F = GJ^{-T}\tau_{1}$$

- Given a desired workspace trajectory $x_d(\cdot)$
 - Computed torque controller:

$$F = M(q)\left(\ddot{x}_d - K_v \dot{e} - K_p e\right) + C(q, \dot{q})\dot{x} + N(q, \dot{q})$$

- From $F = GJ^{-T}\tau$ we can find τ than satisfying F (actually we could find extra τ that corresponds to internal forces)
- $^{\circ}$ Solve for τ :

 $\tau = J^T G^+ F + J^T f_N$

ii. Maintaining Internal Forces

$$M(q)\ddot{x} + C(q,\dot{q})\dot{x} + N(q,\dot{q}) = F = GJ^{-T}\tau_{1}$$

- f_N must be chosen such that the net contact force lies in the friction cone FC
- Two ways to solve for internal forces
 - $^{\circ}$ Method 1: compute final control law

$$\tau = J_h^T G^+ F + J_h^T f_{N,d}$$

 $^{\circ}$ Method 2: measure the applied internal forces and adjust f_N using a second feedback control law.

$$f = f_d + \alpha \int (f - f_d) \, dt$$

Hierarchical Control Structures

- A multifingered robot hand can be modeled as a set of robots which are coupled to each other and an object by a set of velocity constraints
- Let's establish the control system following these steps:
 - 1. Defining robots
 - 2. Attaching robots
 - 3. Controlling robots
 - 4. Building hierarchical controllers

Hierarchical Control Structures

- 1. Defining robots
- 2. Attaching robots
- 3. Controlling robots
- 4. Building hierarchical controllers

Hierarchical Control Structures

- 1. Defining robots
- 2. Attaching robots
- 3. Controlling robots
- 4. Building hierarchical controllers

 x_b

 x_r

Hierarchical Control Structures

- 1. Defining robots
- 2. Attaching robots
- 3. Controlling robots
- 4. Building hierarchical controllers

 $heta_{r,2}$ $\theta_{l,2}$ $\theta_{l,1}$ Hand: asks for current state, x_b and \dot{x}_b Finger: ask for current state, x_f and \dot{x}_f Left: read current state, θ_l and $\dot{\theta}_l$ Right: read current state, θ_r and $\dot{\theta}_r$ Finger: $x_f, \dot{x}_f \leftarrow f(\theta_l, \theta_r), J(\dot{\theta}_l, \dot{\theta}_r)$ Hand: $x_b, \dot{x}_b \leftarrow g(x_f), G^{+T} \dot{x}_f$.

 x_l

