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Some References
• Besides this book, I made this slides under the references of other two books: 

A Mathematical Introduction 
to Robotic Manipulation Modern RoboticsIntroduction to Robotics 

Mechanics and Control

Chapter 6 Hand Dynamics and Control Some References 2 / 69

http://hades.mech.northwestern.edu/images/7/7f/MR.pdf
http://www.mech.sharif.ir/c/document_library/get_file?uuid=5a4bb247-1430-4e46-942c-d692dead831f&groupId=14040
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Contents Goal

1. Lagrange’s Equations with Constraints Calculate the dynamics of a mechanical system subject to Pfaffian
constraints

2. Robot Hand Dynamics Derive the equations of motion for a multifingered hand 
manipulating an object

3. Redundant and Nonmanipulable Robot Systems Derive more complex equations of motion for redundant or 
nonmanipulable robot system 

4. Kinematics and Statics of Tendon actuation Describe the kinematics of tendon-driven systems

5. Control of Robot Hands Introduce an extended control law for constraints-involved system 
and other control structures

Chapter 6: Hand Dynamics and Control

Chapter 6 Hand Dynamics and Control Outline 3 / 69
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Contents of This Talk

• Recall 

• Lagrange’s Equations with Constraints

• Robot Hand Dynamics

• Redundant and Nonmanipulable Robot Systems

• Kinematics and Statics of Tendon Actuation

• Control of Robot Hand

Chapter 6 Hand Dynamics and Control Outline 4 / 69
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Contents of This Talk

• Recall

◦Chapter 4 Robot Dynamics and Control
◦Chapter 5 Multifingered Hand Kinematics

• Lagrange’s Equations with Constraints

• Robot Hand Dynamics

• Redundant and Nonmanipulable Robot Systems

• Kinematics and Statics of Tendon Actuation

• Control of Robot Hand

Chapter 6 Hand Dynamics and Control Outline 5 / 69
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Recall
• We only need to recall Jacobian

Chapter 6 Hand Dynamics and Control Jacobian 6 / 69
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Recall

1. Lagrange’s equations

◦Energy-based

◦Determine and exploit structural 
properties of the dynamics

• Robotic dynamics: deriving the equation of motion including 𝑞, ሶ𝑞, ሷ𝑞 and 𝜏

• Forward dynamics: find joint accelerations

◦Given 𝑞, ሶ𝑞 and 𝜏, find ሷ𝑞

• Inverse dynamics: find joint forces and torques

◦Given 𝑞, ሶ𝑞 and ሷ𝑞, find 𝜏

• Two approaches for solving robot dynamics problem. 

2. Newton-Euler equations

◦Rely on 𝑓 = 𝑚𝑎

◦Often used for numerical solution of 
forward/inverse dynamics

Chapter 6 Hand Dynamics and Control Robotic dynamics 7 / 69
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• Lagrange’s equation

◦𝑚: mass of the body, assume origin of {b} =CoM

◦𝐹𝑏: total force and moment acting on the body

◦𝑚𝑣𝑏: linear momentum of the body

◦ : angular momentum of the body

• Newton-Euler equations

• Lagrange’s equation for open-
chain robot manipulator

慣性力＋遠心力・コリオリ力＋ポテンシャルエネルギーに伴う力
=関節に加えられるトルクとそれ以外の力

Chapter 6 Hand Dynamics and Control Robotic Dymanics 8 / 69
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Recall

Contact model
Common contact types

Grasp map: map the contact forces to the total object force

Definition of force closure

Definition of internal forces

Grasp constraints

Relationship between forces and velocities

Chapter 6 Hand Dynamics and Control Grasp & manipulation 9 / 69
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Contents of This Talk

• Recall

• Lagrange’s Equations with Constraints
◦Pfaffian constraints
◦Lagrange multipliers
◦Lagrange-d’Alembert formulation
◦The Nature of nonholonomoic constraints

• Robot Hand Dynamics

• Redundant and Nonmanipulable Robot Systems

• Kinematics and Statics of Tendon Actuation

• Control of Robot Hand

Chapter 6 Hand Dynamics and Control Outline 10 / 69
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• A constraint restricts the motion of the mechanical system by limiting the 
set of paths which the system can follow. 

• e.g. An idealized planar pendulum

• All trajectories of the particles must satisfy the algebraic constraint: 

◦This constraint acts via constraint forces, which modify the motion to
insure the constraint is always satisfied. 

• Holonomic constraint vs. nonholonomic constraint

Constraints

Constraint force: 
Tension

1. Lagrange’s Equations with Constraints 1.1. Pfaffian constraints 11 / 69
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Constraints

• Configuration space can be represented by vector:

◦(𝑥, 𝑦, 𝜃) ∈ ℝ3

• These four joints always satisfy this equation: 

• (Constraint involves velocity)

• It’s a nonholonomic constraint this system could move 
between two arbitrary states with some constraint of velocity. 

• Holonomic constraint vs. nonholonomic constraint

• Let’s explain simply using some mechanical system examples with constraints

Planar unicycle

1. Lagrange’s Equations with Constraints 1.1. Pfaffian constraints 12 / 69
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Constraints

• Configuration space can be represented by vector:

◦(𝜃1, 𝜃2, 𝜃3,𝜃4) ∈ ℝ4

• These four joints always satisfy these equations: 

• Degree of Freedom: one

• It’s a holonomic constraint because it reduces degrees of 
freedom in the system

• Holonomic constraint vs. nonholonomic constraint

Planar four-bar linkage

1. Lagrange’s Equations with Constraints 1.1. Pfaffian constraints 13 / 69
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Holonomic/Nonholonomic Constraint
• If we set

◦𝑛: dimensions of configuration space 𝑞 = (𝑞1,… , 𝑞𝑛)

◦𝑘:  number of independent constraints

◦A question: whether the system could be moved between two arbitrary states without 
violating the velocity constraint?

• Holonomic constraints can be represented locally as algebraic constraints:

◦ ℎ 𝑞 = 0, ℎ ∶ ℝ𝑛 → ℝ𝑘

◦Answer: No

• Nonholonomic constraints can be represented as

◦ℎ 𝑞, ሶ𝑞 = 0

◦Answer: Yes

1. Lagrange’s Equations with Constraints 1.1. Pfaffian constraints 14 / 69
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Holonomic constraint
• Holonomic constraints can be represented locally as algebraic constraints:

◦ℎ 𝑞 = 0, ℎ ∶ ℝ𝑛 → ℝ𝑘

• And the matrix is full row rank 

• Constraint force

◦Constraint forces do no work (will be explained later)

1. Lagrange’s Equations with Constraints 1.1. Pfaffian constraints 15 / 69
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Pfaffian constraint
• Pfaffian constraint: generally we write velocity constraints as: 

• This is the form of However, if there exist a vector-valued function such that

◦

◦Pfaffian constraint is integrable

◦Pfaffian constraint is equivalent to a holonomic constraint

• Otherwise, pfaffian constraint which is not integrable is an example of a non-holonomic 
constraint (not all). 

• Constraint forces

where represents a set of 𝑘 velocity constraints.

1. Lagrange’s Equations with Constraints 1.1. Pfaffian constraints 16 / 69
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Dynamics with Constraints
• Goal: derive the equations of motion for a mechanical system with configuration 𝑞 ∈ ℝ𝑛 subject 

to a set of Pfaffian constraints.

◦Mechanical system: constraints are everywhere smooth and linearly

◦Lagrangian: kinetic energy minus potential energy

◦Constraint: 

• Let’s write the equations of motion considering the constraint can affects the motion additionally:

◦ : relative magnitudes of constraint forces, also called Lagrange multipliers

Constraint 
forces

Nonconservative and 
externally applied forces

1. Lagrange’s Equations with Constraints 1.2. Lagrange multipliers 17 / 69
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Dynamics with Constraints
• 3 Steps for calculating the equation of motion with constraints

① Write the equations of motion (done, but Lagrange multipliers are unknown)

② Solve these multipliers because each 𝜆𝑖 will be a function with 𝑞, ሶ𝑞, Υ

③ Substituting them back into the equations of motion

• We will show how to solve the multipliers 𝜆 in ②:  

◦Differentiate the constraint equation (6.3) ⇒ (6.3.1) 

◦Write Lagrange’s equations like this (6.5)

◦Solve (6.5) for ሷ𝑞 and substitute into (6.3.1), and we will get 

◦ So finally 

If constraints are independent, this matrix is full rank

1. Lagrange’s Equations with Constraints 1.2. Lagrange multipliers 18 / 69
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Dynamics with Constraints

① Write the equations of 
motion 

② Solve these multipliers

③ Substituting them back 
into the equations of 
motion

• Configuration

• Constraint

• Pfaffian constraint

• No constraint Lagrangian

• Substitude these formulation into

• So Lagrangian with constraint will be: 

Forces that move 
the pendulum

Forces against 
constraints

Unknown, let’s 
move to step ②

1. Lagrange’s Equations with Constraints 1.2. Lagrange multipliers 19 / 69
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Dynamics with Constraints

① Write the equations of 
motion 

② Solve these multipliers

③ Substituting them back 
into the equations of 
motion

• Solve Lagrange Multipliers using this: 

1. Lagrange’s Equations with Constraints 1.2. Lagrange multipliers 20 / 69
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Dynamics with Constraints

① Write the equations of 
motion 

② Solve these multipliers

③ Substituting them back 
into the equations of 
motion

• Finally the equations of motion are: 

1. Lagrange’s Equations with Constraints 1.2. Lagrange multipliers 21 / 69
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Dynamics with Constraints

① Write the equations of 
motion 

② Solve these multipliers

③ Substituting them back 
into the equations of 
motion

• This is a second-order differential equation in two variables 𝑥, 𝑦

• But system only has one degree of freedom

• Thus, we have increased the number of variables required to represent 
the motion of the system. 

• Additionally, we can obtain constraint force: tension 𝑇 in the rod: 

𝑇

1. Lagrange’s Equations with Constraints 1.2. Lagrange multipliers 22 / 69
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Lagrange-D’Alembert Equation

Movement 
orientation

Tension

𝛿𝒒

• D’Alembert’s principle: constraint forces do no work for any instantaneous 
motion which satisfies the constraints. 

◦Given configuration 𝒒 ∈ ℝ𝑛, 

◦Virtual displacement 𝛿𝒒 ∈ ℝ𝑛, an arbitrary infinitesimal displacement 
which satisfies the constraints 

• The reason why we introduce D’Alembert’s principle:

◦Solving equations of motion without calculating constraint forces? 

◦Obtain a more concise equation of the dynamicsThis example can show that 
constraint forces do no work

Constraint 
forces

Nonconservative and 
externally applied 

forces
Lagrange equation can become this when 

Eliminating constraint force

⇒

1. Lagrange’s Equations with Constraints 1.3. Lagrange-d’Alembert formulation 23 / 69
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Lagrange-D’Alembert Equation

◦Configuration 𝑞 = (𝑥, 𝑦, 𝜃, 𝜙)

◦Velocity constraints

◦𝜏𝜃: driving torque on the wheel

◦𝜏𝜙: steering torque (about the vertical axis)

◦ :inertia about the horizontal (rolling) axis 

◦ :inertia about the vertical axis

A rolling disk that rolls without slipping

• Let’s use Lagrange-d’Alembert equation to solve the dynamics for a rolling disk

⇔

• Lagrangian will be:

1. Lagrange’s Equations with Constraints 1.3. Lagrange-d’Alembert formulation 24 / 69
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Lagrange-D’Alembert Equation

• Virtual displacement

• Lagrange-d’Alembert equations
① Write the equations of 

motion 

② Reduce the configuration

③ Further simplify the 
equation

1. Lagrange’s Equations with Constraints 1.3. Lagrange-d’Alembert formulation 25 / 69



26 / 242021/10/8

Lagrange-D’Alembert Equation

• Virtual displacement

• Lagrange-d’Alembert equations

• Equation can be written without

• Since are free, the dynamics become:   

① Write the equations of 
motion 

② Reduce the configuration

③ Further simplify the 
equation ⇓From constraint we can solve

1. Lagrange’s Equations with Constraints 1.3. Lagrange-d’Alembert formulation 26 / 69
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Lagrange-D’Alembert Equation

• We have dynamics equation:   

• We can eliminate by differentiating the constraints

• Finally, it’s second-order differential equation in 𝜃 and 𝜙

⇒

① Write the equations of 
motion 

② Reduce the configuration

③ Further simplify the 
equation

1. Lagrange’s Equations with Constraints 1.3. Lagrange-d’Alembert formulation 27 / 69
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Lagrange-D’Alembert Equation

• Let’s summarize this rolling disk dynamics (a nonholonomic system). 

• Given the trajectory of 𝜃 and 𝜙, we can determine the trajectory of the disk 
as it rolls along the plane.

• The equation of motion is 1 + 2

1. A second-order equations in a reduced set of variables plus

2. A set of first-order equations

① Write the equations of 
motion 

② Reduce the configuration

③ Further simplify the 
equation

1. Lagrange’s Equations with Constraints 1.3. Lagrange-d’Alembert formulation 28 / 69
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• Let’s wrap it up with mathematical formulations

• Goal: get a more explicit description of the dynamics

◦Lagrange-d’Alembert equation

◦Rewrite these: 

◦So that we can use to eliminate .   (           is free or unconstrainted)

◦We can eliminate  ሶ𝑞2 ሷ, 𝑞2 using the constraint ሶ𝑞2 = −𝐴2−1𝐴1 ሶ𝑞1

Lagrange-D’Alembert Equation

⇒

1. Lagrange’s Equations with Constraints 1.3. Lagrange-d’Alembert formulation 29 / 69
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• When we calculate the dynamics for a mechanical system with nonholonomic system

• Wrong: directly substitute the constraints to the equations of motion to eliminate the constraints

• For example:

◦Configuration

◦Constraints (nonholonomic)

◦Lagrangian (for simplicity, assume it doesn’t depend on 𝑠)

◦Substitute Lagrangian to the Lagrange-d’Alembert equation

◦Rearranging terms and we obtain: 

Nonholonomic System

⇒

1. Lagrange’s Equations with Constraints 1.4. The nature of nonholonomic constraints 30 / 69
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• When we calculate the dynamics for a mechanical system with nonholonomic system

• Wrong: directly substitute the constraints to the equations of motion to eliminate the constraints

• For example:

◦Let’s look at the final equations

◦If we directly substitute the constraints to the equations of motion, we will get these 
spurious terms, the final dynamic equations are wrong

Nonholonomic System

Exactly Lagrange-d’Alembert equation Spurious terms

1. Lagrange’s Equations with Constraints 1.4. The nature of nonholonomic constraints 31 / 69
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• When we calculate the dynamics for a mechanical system with nonholonomic system

• Wrong: directly substitute the constraints to the equations of motion to eliminate the constraints

• Is it still wrong for a holonomic system? 

◦We know the constraint is integrable, so that there exists ℎ(𝑟) such that

◦So that for the right side

◦So for a holonomic system, if we substitute the constraints to the equations of motion, we 
can still get a correct equations of motion

Holonomic System

⇒

= 0

1. Lagrange’s Equations with Constraints 1.4. The nature of nonholonomic constraints 32 / 69
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Contents of This Talk

• Recall some previous knowledge

• Lagrange’s Equations with Constraints

• Robot Hand Dynamics

◦Derivation and properties
◦Internal forces
◦Other robot systems

• Redundant and Nonmanipulable Robot Systems

• Kinematics and Statics of Tendon Actuation

• Control of Robot Hand

2. Robot Hand Dynamics Outline 33 / 69
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Equation of Motion
Dynamics of the fingers (using Lagrangian)

Joint angles for all fingers:
Joint torques for all fingers: 

Dynamics of the object (Newton-Euler equation)

If object is subject to gravity alone: 

In Newton-Euler method: 
object 𝑥𝑜 = (𝑝, 𝑅) ∈ 𝑆𝐸(3)

2. Robot Hand Dynamics 2.1. Derivation and properties 34 / 69
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Equation of Motion

Dynamics of the object
(To apply Lagrangian-d’Alembert equation)

It’s the relationship between the finger 
velocity and object velocity

We have to convert object from 𝑆𝐸(3) to local coordinate, which is: 
𝑥𝑜 = (𝑝, 𝑅) ∈ 𝑆𝐸 3 ⇒ 𝑥 ∈ ℝ6

So that the object dynamics can be written as: 

Grasp constraints * Chapter 5
5.5 Grasp Constraints

Three assumptions of grasping
1) The grasp is force-closure and manipulable
2) The hand Jacobian is invertible
3) The contact forces remain in the friction cone at all times

2. Robot Hand Dynamics 2.1. Derivation and properties 35 / 69
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Equation of Motion
Dynamics of the system

(Apply Lagrangian-d’Alembert equation)

• Configuration: 𝑞 = (𝜃, 𝑥)

• Lagrangian: 

• Virtual displacement: 𝛿𝑞 = 𝛿𝜃, 𝛿𝑥

• Constraint: 

• Lagrange-d’Alembert equations: 
Apply steps from last section to using 
Lagrangian-d’Alembert equation

① Write the equations of motion 

② Reduce the configuration

③ Further simplify the equation

−𝐽ℎ 𝐺𝑇 ሶ𝜃
ሶ𝑥
= 0

Recall Lagrangian-d’Alembert equation

−𝐽ℎ 𝐺𝑇 𝛿𝜃
𝛿𝑥 = 0

𝛿𝜃 = 𝐽ℎ−1𝐺𝑇𝛿𝑥

2. Robot Hand Dynamics 2.1. Derivation and properties 36 / 69
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Equation of Motion

• Configuration: 𝑞 = (𝜃, 𝑥)

• Lagrangian: 

• Virtual displacement: 𝛿𝑞 = (𝛿𝜃, 𝛿𝑥)

• Lagrange-d’Alembert equations:

• Since 𝛿𝑥 is free:  

Apply steps from last section to using 
Lagrangian-d’Alembert equation

① Write the equations of motion 

② Reduce the configuration

③ Further simplify the equation

= 0

Dynamics of the system
(Apply Lagrangian-d’Alembert equation)

2. Robot Hand Dynamics 2.1. Derivation and properties 37 / 69



38 / 242021/10/8

Equation of Motion
Dynamics of the system

(Apply Lagrangian-d’Alembert equation)

• Furthermore, eliminate ሶ𝜃, ሷ𝜃, and obtain the final equation of motion: 

Apply steps from last section to using 
Lagrangian-d’Alembert equation

① Write the equations of motion 

② Reduce the configuration

③ Further simplify the equation

2. Robot Hand Dynamics 2.1. Derivation and properties 38 / 69
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Equation of Motion (Conclusion)

• Equation of motion for robot hand

• Properties of the derived equation of motion (Temporally Proof omitted)

If a grasp is force-closure, this term is internal forces

2. Robot Hand Dynamics 2.1. Derivation and properties 39 / 69
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Finding Contact Force
• Goal: Find the instantaneous contact forces during motion. 

• Internal forces: if a grasp is force-closure, then there exist contact forces which produce no net 
wrench on the object.

• In dynamics, internal forces maps joint torques into object forces. 

◦If , no net wrench is generated

◦But even if , internal forces still exists due to those constraint forces which 
the Lagrange-d’Alembert equations eliminated. 

• Recall full equation of motion with pfaffian constraints: 

Lagrangian multiplier 𝜆: 
contact forces

2. Robot Hand Dynamics 2.2. Internal forces 40 / 69
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• Solve for Lagrange multiplier using results in Section 1.2. Lagrange Multipliers 

• Another method to solve for constraint forces

◦If 𝐽ℎ is invertible, directly using the joint acceleration. 

Finding Contact Force

ഥ𝑀 ҧ𝐶 ഥ𝑁

2. Robot Hand Dynamics 2.2. Internal forces 41 / 69
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Other Robot Systems
• Let’s see some examples. 

• Robot system subject to constrains of have dynamics with the same form 
and structure we introduced before. 

Coordinated lifting

2. Robot Hand Dynamics 2.3. Other robot systems 42 / 69
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Other Robot Systems
Workspace dynamics

Motoman robot performing a welding task
Robot grasping a welding tool

• , Jacobian: 

• Kinematics: 

• Dynamics: 

Dynamics of the welding tool

Dynamics of the system

2. Robot Hand Dynamics 2.3. Other robot systems 43 / 69
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Other Robot Systems
• This kind of tasks consist of both a desired motion and a desired force

• Constraint: ℎ 𝜃, 𝑥 = 0

• Dynamics: 

Hybrid position/force dynamics

Robot writing on a planar

2. Robot Hand Dynamics 2.3. Other robot systems 44 / 69
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Contents of This Talk

• Recall 

• Lagrange’s Equations with Constraints

• Robot Hand Dynamics

• Redundant and Nonmanipulable Robot Systems

◦Dynamics of redundant manipulator
◦Nonmanipulable grasps
◦Example: Two-fingered SCARA grasp

• Kinematics and Statics of Tendon Actuation

• Control of Robot Hand

3. Redundant and Nonmanipulable Robot Systems Outline 45 / 69
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Dynamics for These Robot Systems (Conclusion)

• How to analyze dynamics redundant and/or nonmanipulable robot systems subject to constraints?

• Constraints: 

Redundant Nonmanipulable

What it is

Constraints introduce kinematic/actuator 
redundancy into robot system. 
• Kinematic redundancy :finger motions which 

do not affect object motion. 
• Actuator redundancy : finger forces which do 

not affect object motion. i.e., Internal forces. 

• Manipulable: when arbitrary motions can be 
generated by fingers

• Nonmanipulable: when finger motion cannot
achieve some motions of the individual contacts.

What 𝐽ℎ looks like • 𝐽ℎ has a non-trivial null space, which 
describes those joint motions. 

• 𝐽ℎ is not full row rank
• 𝐽ℎ does not span the range of 𝐺𝑇

How to write 
equation of motion 

Extend the constraints by brining 𝐾ℎ which 
spans the null space of 𝐽ℎ. 

Rewrite the constraints by bringing 𝐻 which spans 
the space of allowable object trajectories. 

3. Redundant and Nonmanipulable Robot Systems 3.0. Conclusion 46 / 69
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• Write the basic grasp constraints:

i. Solve for redundancy

ii. Solve for Nonmanipulable

Examples: Two-fingered SCARA grasp

Notice this 𝐽ℎ(𝜃) is not invertible

3. Redundant and Nonmanipulable Robot Systems 3.0. Examples 47 / 69
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• Define 𝐾 where 𝜕𝑦
𝜕𝜃

= 𝐾(𝜃). 

◦We define ℎ 𝜃 = (𝜃11 + 𝜃12 + 𝜃13, 𝜃21 + 𝜃22 + 𝜃23)

◦So that 𝐾1 =
1 1
0 0

1 0
0 0 , 𝐾2 =

0 0
1 1

0 0
1 0

• Expand the constraints:

• Notice we increased the internal variables to describe the internal motion. i.e. velocity ሶ𝑦. 

• But it does not alter the nonmanipulable nature since 𝐽ℎ still does not span the range of 𝐺𝑇. 

Examples: i. Solve for Redundancy

3. Redundant and Nonmanipulable Robot Systems 3.1. Dynamics of redundant manipulators 48 / 69
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• Define the space of allowable object velocities

◦
⇑ It has 𝑙 dimensions

◦i.e. Object can move along [0,1,0,0,0,0]𝑇

◦i.e. But object cannot move along [0,0,0,0,1,0]𝑇 (Rotating around Y-axis)

• Next, we construct a matrix 𝐻 𝜃, 𝑥 ∈ ℝ𝑝×𝑙 using 𝑊 𝜃, 𝑥

◦Every column of 𝐻 is the allowing object velocity in 𝑊 (basis)

• Rewrite grasp constraints: 

Examples: ii. Solve for Nonmanipulable

ሶ𝑥 ∈ ℝ𝑝: object velocity
𝑤 ∈ ℝ𝑙: object velocity in 
terms of the basis of 𝐻

Recall rewritten formulation

3. Redundant and Nonmanipulable Robot Systems 3.1. Nonmanipulable grasps 49 / 69
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Contents of This Talk

• Recall

• Lagrange’s Equations with Constraints

• Robot Hand Dynamics

• Redundant and Nonmanipulable Robot Systems

• Kinematics and Statics of Tendon Actuation

◦Inelastic tendons
◦Elastic tendons
◦Analysis and control of tendon-driven fingers

• Control of Robot Hand

4. Kinematics and Statics of Tendon Actuation Outline 50 / 69
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Tendon-Driven Finger
• Introduce a mechanism to carry forces from an actuator to the appropriate joint.

• Model the routing of each tendon by an extension function:

◦ℎ𝑖: Q → ℝ

◦It measures the displacement of tendon end and the joint angles of the finger

◦i.e. 

A simple tendon-driven finger 
Consists of linkages, tendons, gears, and pulleys

𝑙𝑖: Nominal extension (at 𝜃 = 0)
𝑟𝑖𝑗: radius of the 𝑗-th joint pulley

4. Kinematics and Statics of Tendon Actuation 4.1. Inelastic tendons 51 / 69
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Inelastic Tendons
• Introduce a mechanism to carry forces from an actuator to the appropriate joint.

• Model the routing of each tendon by an extension function:

◦ℎ𝑖: Q → ℝ

◦It measures the displacement of tendon end and the joint angles of the finger

◦i.e. 

A finger which is actuated by 
a set of inelastic tendons

𝑙𝑖: Nominal extension (at 𝜃 = 0)
𝑟𝑖𝑗: radius of the 𝑗-th joint pulley
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Inelastic Tendons
• Finger examples and their extension functions

Example of tendon routing with non 
linear extension function

Planar tendon-driven finger

• Extension functions: 

• Extension functions: 
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Inelastic Tendons
• Let’s define the relationships between the tendon forces and the joint torques using tendon 

extension functions. 

◦Tendon extensions vectors with 𝑝 tendons: 𝑒 = ℎ 𝜃 ∈ ℝ𝑝

◦Define coupling matrix:  𝑃 𝜃 = 𝜕ℎ𝑇

𝜕𝜃
𝜃 mapping tendon forces and the joint torques

◦ So

◦ Since work done by the tendons must equal that done by the fingers (conservation of 
energy): where 𝑓 ∈ ℝ𝑝 is the force applied to the tendons tends. 

• Combined kinematics and dynamics: 
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Inelastic Tendons

•

•

• An example

◦Extension function

◦ Coupling matrix

Tendon
forces

Joint
torques 

Coupling
matrix

Planar tendon-driven finger
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Elastic Tendons
• Applying a single spring element at the base of the tendon: 

Planar finger with position-controlled 
elastic tendons

• Extension functions

• Coupling Matrix

• We also want to establish the relationship between
tendon extension and the joint torques using a new 
coupling matrix 
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Elastic Tendons
• Let’s define the relationships between the tendon extension and the joint torques using a new 

coupling matrix.  

• Extension of the tendon as commanded by the actuator: 𝑒𝑖

• Extension of the tendon due to the mechanism: ℎ𝑖(θ)

• Net force applied to tendons: 

• Define 𝐾: diagonal matrix of tendon stiffnesses, where  𝑘𝑖 is the stiffness of 𝑖-th tendon

• Write dynamics: 

New coupling 
matrix

Models the stiffness of the 
tendon network
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Elastic Tendons
•

•

• An example (top-right finger):

◦We already wrote the extension functionℎ1, ℎ2, ℎ3, ℎ4 and coupling matrix 𝑃(𝜃)

◦Stiffness matrix ： ◦Overall stiffness: 

◦New coupling matrix that mapping joint torques and tendon extension

Tendon
extension

Joint
torques 

New 
coupling
matrix

𝜏 = 𝑄𝑒, 𝑄 ≔ 𝑃𝐾

Planar finger with position-controlled 
elastic tendons
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Control of Tendon-Driven Fingers 
• First, define a tendon network is force-closure:

◦For any 𝜏 ∈ ℝ𝑛 there exists a set of forces 𝑓 ∈ ℝ𝑝 such that

◦So the necessary and sufficient condition is 𝑃 be surjective and there exist a strictly positive 
vector of internal forces 𝑓𝑁 ∈ ℝ𝑝, 𝑓𝑁,𝑖 > 0 such that 

• Verify the necessary number of tendons to construct a force-closure tendon network:

◦“N+1” tendon configuration: 
• N tendons which generate torques in the opposite direction
• 1 tendon which pulls on all of the joints in one direction

◦“2N” tendon configuration: 
• 2 tendons to each joint (total N joints), acting in opposite directions
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Control of Tendon-Driven Fingers 
• Next, write the tendon forces for inelastic tendons:  

• Also, let’s move on to elastic tendons: 

◦We must solve the following equations: 

◦How to solve: assume tendon network is force-closure, there exists a vector of extensions 
𝑒𝑁 ∈ ℝ𝑝 such that 𝑒𝑁,𝑖 > 0 and 𝑃𝐾𝑒𝑁 = 0, so we will choose very large 𝑒𝑁 we can obtain: 

pseudo-inversed 
coupling matrix

Internal forces to 
ensure all ℎ > 0

4. Kinematics and Statics of Tendon Actuation 4.3. Analysis and control of tendon-driven fingers 60 / 69



61 / 242021/10/8

Contents of This Talk

• Recall

• Lagrange’s Equations with Constraints

• Robot Hand Dynamics

• Redundant and Nonmanipulable Robot Systems

• Kinematics and Statics of Tendon Actuation

• Control of Robot Hand

◦Extending controllers
◦Hierarchical control structures
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Control 
• Recall some definition in Chapter 4: 

• Position control: given a designed trajectory, how should the 
joint torques be chosen to follow that trajectory? 

◦Desired motion: 𝜃𝑑
◦Actual motion: 𝜃

◦Error: 𝑒 = 𝜃𝑑 − θ

◦Constant gain matrices: 𝐾𝑣,𝐾𝑝
◦Dynamics (without constraints):

◦Computed torque control law:

◦Computing torque

A simple model of robot closed-
loop control system
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Control 
• Here, we consider robot hand control as control problems with constraints

• We derived dynamics of this kind of constrained system

◦Error: 𝑒 ≔ 𝑥 − 𝑥𝑑

• Let’s achieve these two goal one by one

Goal How to achieve? 

i. Tracking a given object/workspace trajectory Find joint torques which satisfy the tracking requirement

ii. Maintaining a desired internal force Add sufficient internal forces to keep the contact forces 
inside the appropriate friction cones
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i. Tracking Trajectory

• Given a desired workspace trajectory 𝑥𝑑(∙)

◦Computed torque controller: 

◦From we can find 𝜏 than satisfying 𝐹 (actually we could find extra 𝜏 that 
corresponds to internal forces)

◦ Solve for 𝜏: 
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ii. Maintaining Internal Forces

• 𝑓𝑁 must be chosen such that the net contact force lies in the friction cone FC

• Two ways to solve for internal forces

◦Method 1: compute final control law

◦Method 2: measure the applied internal forces and adjust 𝑓𝑁 using a second feedback control 
law. 
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Hierarchical Control Structures
• A multifingered robot hand can be modeled as a set of robots which are coupled to each other 

and an object by a set of velocity constraints

• Let’s establish the control system following these steps: 

1. Defining robots

2. Attaching robots

3. Controlling robots

4. Building hierarchical controllers
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Hierarchical Control Structures

1. Defining robots

2. Attaching robots

3. Controlling robots

4. Building hierarchical controllers

5. Control of Robot Hand 5.2. Hierarchical control structures 67 / 69



68 / 242021/10/8

Hierarchical Control Structures

1. Defining robots

2. Attaching robots

3. Controlling robots

4. Building hierarchical controllers
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Hierarchical Control Structures

1. Defining robots

2. Attaching robots

3. Controlling robots

4. Building hierarchical controllers
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