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Chapter 6 Hand Dynamics and Control

Chapter 6: Hand Dynamics and Control

Contents

Goal

1. Lagrange’s Equations with Constraints

Calculate the dynamics of a mechanical system subject to Pfaffian
constraints

2. Robot Hand Dynamics

Derive the equations of motion for a multifingered hand
manipulating an object

3. Redundant and Nonmanipulable Robot Systems

Derive more complex equations of motion for redundant or
nonmanipulable robot system

4. Kinematics and Statics of Tendon actuation

Describe the kinematics of tendon-driven systems

5. Control of Robot Hands

Introduce an extended control law for constraints-involved system
and other control structures
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Contents of This Talk

* Recall

* Lagrange’s Equations with Constraints

* Robot Hand Dynamics

* Redundant and Nonmanipulable Robot Systems
* Kinematics and Statics of Tendon Actuation

e Control of Robot Hand



Chapter 6 Hand Dynamics and Control Outline

Contents of This Talk

Recall

© Chapter 4 Robot Dynamics and Control
© Chapter 5 Multifingered Hand Kinematics

Lagrange’s Equations with Constraints

Robot Hand Dynamics

Redundant and Nonmanipulable Robot Systems

Kinematics and Statics of Tendon Actuation

Control of Robot Hand



Chapter 6 Hand Dynamics and Control Jacobian

Recall

* We only need to recall Jacobian

The manipulator Jacobian relates the joint velocities 0 to the end-
effector velocity Vi and the joint torques 7 to the end-effector
wrench F"

st = sst(e)g T = (Jsst)TFs (spatial)

VE=Jb0)0 1= (J5)TF,  (body).

If the manipulator kinematics is written using the product of expo-
nentials formula, then the manipulator Jacobians have the form:

Jgt(o) - [61 ff'z T 6:1] 6"{ - Ad(e§191 .. .egi-—loi—l) i

Jo () = [ef ... ¢f i F— Ad~L _ ..
+(0) = [& G 8] E=AM G g0



Chapter 6 Hand Dynamics and Control

Recall

* Robotic dynamics: deriving the equation of motion including q,q, g and
* Forward dynamics: find joint accelerations

© Given q,q and T, find g
* Inverse dynamics: find joint forces and torques

© Giveng,q and g, find T

* Two approaches for solving robot dynamics problem.

1. Lagrange’s equations 2. Newton-Euler equations
°© Energy-based °©Relyon f =ma
© Determine and exploit structural © Often used for numerical solution of

properties of the dynamics forward/inverse dynamics



Chapter 6 Hand Dynamics and Control

Robotic Dymanics

e Lagrange’s equation

. The equations of motion for a mechanical system with Lagrangian

L =1T(q.q) — V(q) satisfies Lagrange’s equations:

d OL 0L
dt 0¢;  Oqi

T,

where ¢ € R" 1s a set of generalized coordinates for the system and
T € R™ represents the vector of generalized external forces.

* Newton-Euler equations

o

m: mass of the body, assume origin of {b} =CoM

(©]

FP?: total force and moment acting on the body

O

mv?: linear momentum of the body

o

Zw? : angular momentum of the body

. The equations of motion for a rigid body with configuration g(¢) €

SE(3) are given by the Newton-FEuler equations:

m I 0 -'l.}b u}b X muv b b
[0 I] Lb] N [wbewb] =

where m 1s the mass of the body, Z is the inertia tensor, and
Vbt = (vb, wb) and F? represent the instantaneous body velocity
and applied body wrench.

* Lagrange’s equation for open- 3.

chain robot manipulator

BHYEAO+ELH VAU H+RT I v LT I F —|

=REEIICINZ >N 5 bILT &EZFNLUSNDA

The equations of motion for an open-chain robot manipulator can
be written as

DN

M(6) +C(6,0)0 + N(0,6) =7




Chapter 6 Hand Dynamics and Control Grasp & manipulation

Definition 5.2. Force-closure grasp
R eca ” A grasp is a force-closure grasp if given any external wrench F, € RP
applied to the object, there exist contact forces f, € FC such that

Contact type Picture Wrench basis FC
0
% 0 Gf(‘ — _Fe.
Frictionless 1 .
point contact 0 hrz0 Definition of force closure
R 0
friction 0 Definition 5.3. Internal forces
cone Lo o If fv € N(G)N FC, then fy is an internal force. If fy € N(G) and
'60 010 fn € int(FC), then it is called a strictly internal force.
Point contact 0 01 VIZF < ufs Lo L
with friction 0 0 0 f3>0 Definition of internal forces
bt 000
object . T )
1000 Jh(Q,CIZO)(g =G (H,ZCO)$O
00 1 ol | VETE<up
Soft-finger O ‘R0 Grasp constraints
000 0 |[fa] <vfs
Contact model 0001 finger contact object
Jh

Common contact types

velocity —

. Vb
domain po

Jex

FozGlfcl ++ka(‘,\=[Gl Gk]

-fc"'— force ; .
. T . ;
Grasp map: map the contact forces to the total object force domain Y\]'T/ \5’7
“h

Relationship between forces and velocities
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Contents of This Talk

Recall

Lagrange’s Equations with Constraints

© Pfaffian constraints

© Lagrange multipliers

© Lagrange-d’Alembert formulation

© The Nature of nonholonomoic constraints

Robot Hand Dynamics

Redundant and Nonmanipulable Robot Systems

Kinematics and Statics of Tendon Actuation

Control of Robot Hand



1. Lagrange’s Equations with Constraints

Constraints

* A constraint restricts the motion of the mechanical system by limiting the

: 1
set of paths which the system can follow. d
: : _ 2
* e.g. Anidealized planar pendulum ¢ = (z,y) € R /_ﬁ@ .
 All trajectories of the particles must satisfy the algebraic constraint:
2 2 2
ety =1 Constraint force:
. : : . . . . _ Tension
© This constraint acts via constraint forces, which modify the motion to 9
insure the constraint is always satisfied. ?
* Holonomic constraint vs. nonholonomic constraint

mg



1. Lagrange’s Equations with Constraints

Constraints

* Holonomic constraint vs. nonholonomic constraint

* Let’s explain simply using some mechanical system examples with constraints

* Configuration space can be represented by vector:
/\9 (0y,0) € R

* These four joints always satisfy this equation:

y— & -tan(f) =0
sin 6 o _
e (Constraint involves velocity)
—cos 6
* It's a nonholonomic constraint this system could move
J? between two arbitrary states with some constraint of velocity.

Planar unicycle




1. Lagrange’s Equations with Constraints

Constraints

* Holonomic constraint vs. nonholonomic constraint

O I (©

O Lo .

¥
L3 Ll 91

Ly
@ ” »
) 77777
- 0,

Planar four-bar linkage

Configuration space can be represented by vector:
© (011 821 63164) € ]R4

These four joints always satisfy these equations:

Licos@; + Lycos(0y +605)+ -+ Lycos(by +---+60,) = 0,
Ll sin 91 + LZ Si11(91 + 92) S R L4 8111(91 + -+ 94)
01 +602+03+604—27 = 0.

Degree of Freedom: one

It’s a holonomic constraint because it reduces degrees of
freedom in the system



1. Lagrange’s Equations with Constraints

Holonomic/Nonholonomic Constraint

e If we set
° n: dimensions of configuration space g = (q4, ..., q,)
© k: number of independent constraints
© A gquestion: whether the system could be moved between two arbitrary states without
violating the velocity constraint?
* Holonomic constraints can be represented locally as algebraic constraints:
° h(g) =0,h: R* - R¥
© Answer: No

* Nonholonomic constraints can be represented as

°h(q,q) =0

o Answer: Yes



1. Lagrange’s Equations with Constraints

Holonomic constraint

* Holonomic constraints can be represented locally as algebraic constraints:

°ch(q) =0,h: R* > Rk

-Oh1 L Ohq A
. 8Q1 8(171 .
* And the matrix oh is full row rank
aq 011’1; L. ah/k
- 0(]1 8(]71 -
, oh'
e Constraint force I' = 0_q A,

© Constraint forces do no work (will be explained later)



1. Lagrange’s Equations with Constraints

Pfaffian constraint

Pfaffian constraint. generally we write velocity constraints as:

A(Q)q — O, where A(q) c RFxn represents a set of k velocity constraints.

This is the form of However, if there exist a vector-valued function / : Q — R* such that
. oh .
> A(q)g=0 = —q = 0.
o dq
o Pfaffian constraint is integrable

© Pfaffian constraint is equivalent to a holonomic constraint

Otherwise, pfaffian constraint which is not integrable is an example of a non-holonomic
constraint (not all).

Constraint forces | = AT((]))\,



1. Lagrange’s Equations with Constraints

Dynamics with Constraints

* Goal: derive the equations of motion for a mechanical system with configuration g € R" subject
to a set of Pfaffian constraints.

© Mechanical system: constraints are everywhere smooth and linearly
° Lagrangian: L(q, q) kinetic energy minus potential energy
© Constraint:  A(q)q = 0 A(q) € RF*™,
* Let’s write the equations of motion considering the constraint can affects the motion additionally:

o L AT((A=T =0
([ZL (_)(1 ()(1 L ((_[) ] 0 J

Constraint Nonconservative and
forces externally applied forces

o Ai,..., Ak :relative magnitudes of constraint forces, also called Lagrange multipliers



1. Lagrange’s Equations with Constraints

Dynamics with Constraints

» 3 Steps for calculating the equation of motion with constraints
D Write the equations of motion (done, but Lagrange multipliers are unknown)
2 Solve these multipliers because each A; will be a function with g, ¢, Y

(3@ Substituting them back into the equations of motion

 We will show how to solve the multipliers A in (2:
o Differentiate the constraint equation A(q)g =0 (6.3)= A(q)j + A(q)q =0 (6.3.1)
o Write Lagrange’s equations like this A/ (q)j + C'(q.4)qd + N(q,q) + AT (¢)A = F, (6.5)
°© Solve (6.5) for g and substitute into (6.3.1), and we will get
I(’AJ[—lAT')I/\ — AM~YF — C¢— N) + Aq.

If constraints are independent, this matrix is full rank

o Sofinally A = (AM~1AT)~! (AM (F —Cg— N) + 4(1)



1. Lagrange’s Equations with Constraints

Y
Dynamics with Constraints
 Configuration (¢ = ([E, y) c R?
+ Constraint 2> + yQ =5
@ Write the equations of : T
, * Pfaffian constraint ol
motion [$ y] = 0
—— | Y
2 Solve these multipliers A(q)
« No constraint Lagrangian L(q,q) = s=m(i? +13%) — mgy. m
(3 Substituting them back g
into the equations of * Substitude these formulation into i% _ % + AT ()X =0,
dt 0q  Jq

motion

So Lagrangian with constraint will be:
Unknown, let’s

. 1 7 movetostep @
[m O] [.l]+|:0]+[1]/\_0. to step

0 m| |y mq Y

Forces that move Forces against
the pendulum constraints



1. Lagrange’s Equations with Constraints 1.2. Lagrange multipliers

Y
Dynamics with Constraints N
/%,\
(D Write the equations of T
motion L : : 0
* Solve Lagrange Multipliers using this:
(2 Solve these multipliers Lo 1 _
(3 Substituting them back A= (A]\J 4 ) (AA'[ (Q B Cq B N) B Aq) mg
into the equations of . m 52 _ 22y — m .2 .2
= —g9Yy — T — = -5y +z" +y"),
B FCY; (—gy ) 2 (9y )



1. Lagrange’s Equations with Constraints 1.2. Lagrange multipliers

Dynamics with Constraints

S\

m 0| |z 0 X ,
0 .|+ |+ A=0.
Write the equations of Sompy g Y \ T
H m L X
motion _Tz(-gy + 3% +9?)
Solve these multipliers . _ _
* Finally the equations of motion are:

Substituting them back my

into the equations of 0 . 0 1
m T e , - 2 "2\ _
[0 m] M N [mg] Rz [y] (mgy +m(@+37) =0.

motion



1. Lagrange’s Equations with Constraints

Y
Dynamics with Constraints

pa

m 0| |z n 0 1 |z n ) 3
@D Write the equations of 0 m| |y mg| 12 |y (mgy +m(i* +4%)) = 0. g T
motion 0

(2) Solve these multipliers ~ * This is a second-order differential equation in two variables x, y

(3 Substituting them back But system only has one degree of freedom mg

into the equations of

Thus, we have increased the number of variables required to represent

motion the motion of the system.

Additionally, we can obtain constraint force: tension T in the rod:

mg iy

Tension = H[ ]AH——y-%— na 2+9°).



1. Lagrange’s Equations with Constraints

Lagrange-D’Alembert Equation

e D’Alembert’s principle: constraint forces do no work for any instantaneous
motion which satisfies the constraints.

y
o Given configuration g € R",
e ! ° Virtual displacement §q € R", an arbitrary infinitesimal displacement
Tension which satisfies the constraints A(q)dq = 0.
(AT ()N - 6g =0
5‘1Z» |
M e * The reason why we introduce D’Alembert’s principle:
ovement
orientation mg : . : : ) )
© Solving equations of motion without calculating constraint forces?
This example can show that o Obtain a more concise equation of the dynamics
constraint forces do no work
d oL 0L , d 0L OL ) i
o= oo AT (A =T =0, —— — = _7Y)-8¢=0.
dt dq dq ) — dt C)q ()(]

Constraint Nonconservative and
forces externally applied Lagrange equation can become this when
forces Eliminating constraint force



1. Lagrange’s Equations with Constraints

Lagrange-D’Alembert Equation

* Let’s use Lagrange-d’Alembert equation to solve the dynamics for a rolling disk

A rolling disk that rolls without slipping

e Lagrangian will be:
1
9

e

. o 1 .. oo - R U T, N
L(q.q) = =m(i? +9°) + 51}69“ + %Ieot. < L(q,q) = 5(:132—|—y2)—|——10092—|—

© Configuration g = (x,y,0, )

© Velocity constraints

;i?—pCOSQézO _ 1 0 0

—pcosf| .
or A(q)g = 01 0 P = 0.

. ‘ G =
y— psinfop =0 —psinf

© Tg: driving torque on the wheel
© T4: steering torque (about the vertical axis)
°© 7 :inertia about the horizontal (rolling) axis

o Z¢ :inertia about the vertical axis

1

T2
> ; cP



1. Lagrange’s Equations with Constraints 1.3. Lagrange-d’Alembert formulation

Lagrange-D’Alembert Equation V6

No

(z,y)

Write the equations of * Virtual displacement g = (5% oy, 00, 5¢)

motion * Lagrange-d’Alembert equations

Reduce the configuration m 0 0 _
8 ([ ™o ] q— [%]) -0g =0 where [(1) (1) 8 _ZZ?;g] dqg = 0.
Further simplify the Le

equation



1. Lagrange’s Equations with Constraints

Lagrange-D’Alembert Equation

Write the equations of
motion

Reduce the configuration

Further simplify the
equation

» Virtual displacement  §q = (dx, 0y, 00, 0¢)

* Lagrange-d’Alembert equations

m 0
( [ m
— ‘

e Equation can be written without dx, 0y

il T o

(
|

0
mp cos 6

0

mp cos f

0

mp sin

0

mp sin 6

)

T

i

|

|+

0

0

* Since §0,0¢ are free, the dynamics become:

0

I

:

0
¢

'l

||

1) -0g =0 where [

|

7o
Te

7o
T

|

)l

56
o¢

¢
Yo
(,y)
1 0 0 —pcosé
0 1 0 —psin@] %9 =0.
UFrom constraint we can solve
ox = pcos oo
0y = psin6oo.

-0



1. Lagrange’s Equations with Constraints

Lagrange-D’Alembert Equation V6

. , * We have dynamics equation:
Write the equations of

. 0 0 il [T 016 To
motion 0 .| =
[mp cosf) mpsin 9] [y] T [ 0 IJ [@] !TJ

Reduce the configuration

Further simplify the  We can eliminate =, ¥ and &, 9 by differentiating the constraints
equation i — pcosfp =0 . & = pcosfp — psin B
y—psi119q5=0 y:psinleq.b.—l—pCOSQQQB,

* Finally, it’s second-order differential equation in 8 and ¢

5 e 3= )



1. Lagrange’s Equations with Constraints

Lagrange-D’Alembert Equation

Write the equations of

motion
Reduce the configuration

Further simplify the
equation

No

e Let’s summarize this rolling disk dynamics (a nonholonomic system).

* Given the trajectory of 8 and ¢, we can determine the trajectory of the disk
as it rolls along the plane.

* The equation of motionis 1 + 2

1. A second-order equations in a reduced set of variables plus

5zt i) - )

2. Aset of first-order equations

T = pcos@g.b
§ = psin0o.



1. Lagrange’s Equations with Constraints

Lagrange-D’Alembert Equation

* Let’s wrap it up with mathematical formulations

* Goal: get a more explicit description of the dynamics

d OL OL

© Lagrange-d’Alembert equation (— T) - 0q = 0, where g € R" satisfies A(q)og = 0.

dt 0¢ 0q
o Rewrite these:

Alg) = [A1le) As(g)].  a=(q1,q2) €R*F x R”
© So that we can use ¢, to eliminate dgy . ( Jq1 is free or unconstrainted)

A(q)-0g=70 — 0ga = —A5  (q)A1(q)dqa.
d OL 0L -
(m—q-a—g*)'"q o d 9L  OL r. 7 (dOL OL

o We can eliminate ¢, {, using the constraint g, = —A5; 14,4,

~12) =0



1. Lagrange’s Equations with Constraints

Nonholonomic System

* When we calculate the dynamics for a mechanical system with nonholonomic system

* Wrong: directly substitute the constraints to the equations of motion to eliminate the constraints

* For example:
o Configuration ¢ = (r.s) € RZ x R
o Constraints § -+ CLT(T‘)f‘ =0 a(r) € RQ, (nonholonomic)

o Lagrangian L.(r.7) = L(r,7, —a™ (r)7). (for simplicity, assume it doesn’t depend on s)

Oa.:
O'rz]- rj) =0

© Substitute Lagrangian to the Lagrange-d’Alembert equation

d 0L, OL d (0L OL oL 0L

—_— € — < — . = 2. — - — Uy T - I - - T~

@ o om0 ThE T g (c")i*i ai(r) c)q) ((")ri 53 2
J

© Rearranging terms and we obtain:

d dL 9L - (doL 9L\ OL(, Zaaj,’.
gior, o) N g@as " as ) T as\ ) 25T
J




1. Lagrange’s Equations with Constraints

Nonholonomic System

* When we calculate the dynamics for a mechanical system with nonholonomic system

* Wrong: directly substitute the constraints to the equations of motion to eliminate the constraints

* For example:
© Let’s look at the final equations
d OL 0L d 0L 0L oL (. da; .
(Eﬁf’i a é)r,) B ai(l)(% ds (")S) - 08 (ai(’) a Z or; ,l)'

J

Exactly Lagrange-d’Alembert equation Spurious terms

° If we directly substitute the constraints to the equations of motion, we will get these

spurious terms, the final dynamic equations are wrong



1. Lagrange’s Equations with Constraints

Holonomic System

* When we calculate the dynamics for a mechanical system with nonholonomic system

* Wrong: directly substitute the constraints to the equations of motion to eliminate the constraints

s it still wrong for a holonomic system?

o We know the constraint is integrable, so that there exists h(7) such that

s+al(r)yr=0  a(r) e R?,

d OL

Oh
= CL@(T) — 8—7“

© So that for the right side (Et)f ~ o

oL . da; . | OL
55 @) = 25 [ 53 (Z

J

© So for a holonomic system, if we substitute the constraints to the equations of motion, we

oL (ddL OL
— @ dt 0s  0Os

0*h_. 9?h
Orior; 2. Br;or; i) ,

can still get a correct equations of motion




2. Robot Hand Dynamics Outline

Contents of This Talk

* Recall some previous knowledge
* Lagrange’s Equations with Constraints

* Robot Hand Dynamics

© Derivation and properties
°© Internal forces
© Other robot systems

 Redundant and Nonmanipulable Robot Systems
* Kinematics and Statics of Tendon Actuation

* Control of Robot Hand



2. Robot Hand Dynamics

Equation of Motion

Dynamics of the fingers (using Lagrangian)

M (0)0 + C¢(6,0)0 + N¢(6,6) = 7.

Joint angles for all fingers: 6= (0y4,...., ff.) € R™

Joint torques for all fingers: - < R

My, 0 Cy, 0 N,

M; = _ Cy = ' Np=1]:
0 My, 0 o Ny,
Dynamics of the object (Newton-Euler equation)
mI 0] [0° Wb x mab
SORIERRGS b Wb = F?°, In Newton-Euler method:
0 7| |w w’ X Tw .
object x, = (p,R) € SE(3)

If object is subject to gravity alone:

mlI 0| -4 mw® 0 b RT (mg)

/ _
[0 I]‘ +[ 0 %(sbz—mt)lv +[ 0 0,



2. Robot Hand Dynamics

Equation of Motion

Dynamics of the object

(To apply Lagrangian-d’Alembert equation)

We have to convert object from SE(3) to local coordinate, which is:
x, = (p,R) E SE(3) > x € R®
So that the object dynamics can be written as:

M,(z)z + Cy(z,z)xz + Ny(x,z) =0,

O WONIK ROBOTICS

* Chapter 5
5.5 Grasp Constraints

» AT . It's the relationship between the finger
Jh (‘97 LE)Q =G (‘97 [C)[E’ velocity and object velocity

Grasp constraints

Three assumptions of grasping

1) The grasp is force-closure and manipulable
2) The hand Jacobian is invertible

3) The contact forces remain in the friction cone at all times



2. Robot Hand Dynamics

Eq u at | O n Of M Ot i O n Recall Lagrangian-d’Alembert equation
{ OL OL )
Dynamics of the system (é; i T) - 0qg =0,
/ (Apply Lagrangian-d’Alembert equation) ! !
A(q)og = 0.

Configuration: g = (6, x)

. 1 : . ]- . . 7 7
Lagrangian: [, = §9TMfe + 51'71\101.- —V(0) — V().

Virtual displacement: §q = (66, 6x)

Constraint:  .J}, (6’, ;17)(9 = GT (6’7 ;U)x', -], GT] [9 =

©WONIK ROBOTICS

Apply steps from last section to using
Lagrangian-d’Alembert equation

Lagrange-d’Alembert equations: |mmmmmmmmm e

|
@ Write the equations of motion d oL 0L ~ ] doL oL 50 i [=Jn GTLLYX =0 1
_—— — — — -0q = |9t o0 96 e : 60 = J;1GT6x l
2 Reduce the configuration dt g  Jq 0 4oL oL o e mm - !
impli i [ OL OL ) lOL OLY .
(3  Further simplify the equation _ (_ﬁ A I (Jh_lGT()J-) n (_f_. il I
dt 96 00 L ) dt Ox ox

-r(dIL _IL L (d4OL _ILY
= (. e 0. _— — — 0.
e \atos o6 ) T \ator  or)



2. Robot Hand Dynamics

Apply steps from last section to using

Equation of Motion

©WONIK ROBOTICS

Lagrangian-d’Alembert equation

@  Write the equations of motion

@
®

Reduce the configuration

Further simplify the equation

(Apply Lagrangian-d’Alembert equation)

Dynamics of the system

Configuration: g = (6, x)

Lagrangian:

1. .1
L=-0"M¢0+ il Myi — V§(0) — V,(x),

2 2

Virtual displacement: 6q = (60, 6x)

Lagrange-d’Alembert equations:
d OL ¢
dt 9§ dq

Since O0x is free:

(

d OL
dt Ox

oL

d0L_oL),

ox

dt Of

T X d OL )L
g =GI T —— - = —
OD = h (dz‘ 06 06

( d 0L 0L

i d OL
T -0x + —
dt Ox

OL
ox

) o, =0



2. Robot Hand Dynamics

Equation of Motion

Dynamics of the system
(Apply Lagrangian-d’Alembert equation)

* Furthermore, eliminate 0, 9, and obtain the final equation of motion:

d oL 0L o (dOL OL L
(dz‘ i au-) & ((h‘ 00 ae) T

~

M(q)# + C(q,4)® + N(q,q) = F,

Apply steps from last section to using
Lagrangian-d’Alembert equation

~

@D  Write the equations of motion M = M, + GJ}:T]U]C J}:IGT

(2 Reduce the configuration

~ d
_ T AT g b1 AT
@  Further simplify the equation C=0Cot+GJy (Cf Sy "G A My dt (’]h G )>
N =N, +GJ, "Ny

F = GJ,_TT.

2



2. Robot Hand Dynamics

Equation of Motion (conclusion)

e Equation of motion for robot hand

M(q)@ + C(q,q)% + N(q,q) = F
M=M,+GJ "M;JGT
C=C,+GJ " (CthlGT - Mf% (JhlGT)>
N =N,+GJ, "Ny

F = GJh_TT. If a grasp is force-closure, this term is internal forces

* Properties of the derived equation of motion (Temporally Proof omitted)

~

1. M(q) is symmetric and positive definite.

~

2. M(q) —2C is a skew-symmetric matriz.



Finding Contact Force

* Goal: Find the instantaneous contact forces during motion.

» Internal forces: if a grasp is force-closure, then there exist contact forces which produce no net
wrench on the object.

* |In dynamics, internal forces F' = GJ}:TT maps joint torques into object forces.

o If ,]}:TT € N(G) , nonet wrench is generated
o Butevenif.J, ' 7 & N(G), internal forces still exists due to those constraint forces which

the Lagrange-d’Alembert equations eliminated.

* Recall full equation of motion with pfaffian constraints:

d 0L 0L AT(A— T =0, Alq) = [=Tn(0,2) G (0,x)]

dt Oq  Oq
Lagrangian multiplier A:

A[f 0 H n Cf 0 9 n *"\Tf 4 _']l? \ — 7| contact forces
0 DMyll|z| [0 Cof |z]| |N, G Y= |0



2. Robot Hand Dynamics

Finding Contact Force

 Solve for Lagrange multiplier using results in Section 1.2. Lagrange Multipliers

My 01[e] [cy o1[6] [Ng] [-JF]. [r
[o J[O] L’-]*[o (*0] L-]*[A’J*[ a |~ o

[ | J | J | J

M C N
A= (AM1AT)! (AM—I ([6] — Cq— N) + Aq) .

e Another method to solve for constraint forces

o |If J, is invertible, directly using the joint acceleration.

A= JiT (7= Mg~ Cpb— Ny).



2. Robot Hand Dynamics

Other Robot Systems

* Let’s see some examples.

* Robot system subject to constrains of J(q)é = GT(q):i: have dynamics with the same form
and structure we introduced before.

Coordinated lifting

= A7 AdTY s 0 | AdTL
- gsltl ‘ Sltl - got1
: : ) : 7b
. H — : VP,
0 Ad-r s AdTt
| - gsktk Sktk_ - gOtk_

[
4
.
)



2. Robot Hand Dynamics

Other Robot Systems

Workspace dynamics

Dynamics of the welding tool

M, (2)i + Cox, #)i + No(x,3) = 0,

Dynamics of the system
« g:Q—R” ,Jacobian: J(0) = %

* Kinematics: J(@)@ — .C.C,
* Dynamics: AY((])CIZ + C’V’(q7 (])ZIZ’ + ]{f(q7 q) = F,

_ : : VY —Tar. 71
Motoman robot performing a welding task M = AJO +J A'[f*]
Robot grasping a welding tool

C=C,+J 7 (Cle + Mf% (J1)>

N=N,+J TN;
F=J"1r



2. Robot Hand Dynamics

Other Robot Systems

* This kind of tasks consist of both a desired motion and a desired force

Hybrid position/force dynamics

* Constraint: h(6,x) =0

Py
0 "~ or

JR N~~~ N——
J GT

+ ynamies: 11 (q) + C(q, 4)i + N(q.4) = F.

~

M

GJ 'MpI Gt

GJ~t (CleGT + ]\[f% (JlGT)>

Robot writing on a planar

C

N =N,+GJ TNy
F=GJ I



3. Redundant and Nonmanipulable Robot Systems

Contents of This Talk

e Recall
* Lagrange’s Equations with Constraints
* Robot Hand Dynamics

* Redundant and Nonmanipulable Robot Systems

© Dynamics of redundant manipulator
© Nonmanipulable grasps
© Example: Two-fingered SCARA grasp

e Kinematics and Statics of Tendon Actuation

* Control of Robot Hand



3. Redundant and Nonmanipulable Robot Systems

Dynamics for These Robot Systems (conclusion)

* How to analyze dynamics redundant and/or nonmanipulable robot systems subject to constraints?

* Constraints:

Jn(0,2)0 = GT (0, x)i

Redundant

Nonmanipulable

What it is

Constraints introduce kinematic/actuator

redundancy into robot system.

* Kinematic redundancy :finger motions which
do not affect object motion.

* Actuator redundancy : finger forces which do
not affect object motion. i.e., Internal forces.

* Manipulable: when arbitrary motions can be
generated by fingers

* Nonmanipulable: when finger motion cannot
achieve some motions of the individual contacts.

What J; looks like

* Jn has a non-trivial null space, which
describes those joint motions.

* Jnis not full row rank
], does not span the range of G

How to write
equation of motion

Extend the constraints by brining K;, which
spans the null space of /.

Jh 9'_ GT 0 T
Kh - 0 1 UN
N ——

Jn GT

Rewrite the constraints by bringing H which spans
the space of allowable object trajectories.

Jhé = GTHw
~——
GT




3. Redundant and Nonmanipulable Robot Systems 3.0. Examples

Examples: Two-fingered SCARA grasp

C 0

* Write the basic grasp constraints: ||‘ o
. [ar -
8“J31 i ]9 ={ x| Vi N
h2 G, c
4 S — N O
.8 , 8 sy
Notice this J;,(8) is not invertible v
i.  Solve for redundancy QL? Yy
T

ii. Solve for Nonmanipulable




3. Redundant and Nonmanipulable Robot Systems

Examples: i. Solve for Redundancy

CO0

; C,OT*@C

[ ] 1 _y o z n

Define K where = K(0). \ y = \
© We define h(@) = (011 + 912 + 913, 621 + 922 + 823) s " P

1 1 0

OSOthatK1=[(1) 0 0 0],1(2:[1 1 1 0

Expand the constraints:

10

A

N

Jh,l 0

0 Jh,2

1110 0000

0000 1110

8

Notice we increased the internal variables to describe the internal motion. i.e. velocity y.

But it does not alter the nonmanipulable nature since Jj, still does not span the range of G7.



3. Redundant and Nonmanipulable Robot Systems

Examples: ii. Solve for Nonmanipulable

* Define the space of allowable object velocities
o W(0,z)={t€RP:3 6 € R™ with J,0 = GTi}.

Mt It has | dimensions

2r

CO0

o i.e. Object can move along [0,1,0,0,0,0]7

© j.e. But object cannot move along [O,O,O,O,l,O]T (Rotating around Y-axis)

 Next, we construct a matrix H(68,x) € RP*! using W (8, x)

© Every column of H is the allowing object velocity in W (basis) H =

* Rewrite grasp constraints:

Jni | 0
0 | Jh2
Ky | K

GTH'
GTH

0

= :
NGO L h y
Gl _~<i
----- ﬂ/MOTCQ 4
. 0
Sl T P
| b | b
- 10000 00 7
01000 00
00100 00
00010 | 00 H’
00000 00 =
00001 00 0
00000 10
| 00000 | 01

Recall rewritten formulation

Jhé — QT H * € RP: object velocity
w € R!: object velocity in

r = Hw, terms of the basis of H




4. Kinematics and Statics of Tendon Actuation Outline

Contents of This Talk

* Recall

* Lagrange’s Equations with Constraints

* Robot Hand Dynamics

 Redundant and Nonmanipulable Robot Systems

e Kinematics and Statics of Tendon Actuation

° Inelastic tendons
o Elastic tendons
© Analysis and control of tendon-driven fingers

* Control of Robot Hand



4, Kinematics and Statics of Tendon Actuation

Tendon-Driven Finger

* Introduce a mechanism to carry forces from an actuator to the appropriate joint.

* Model the routing of each tendon by an extension function:
O hi: Q - R
°© It measures the displacement of tendon end and the joint angles of the finger

°i.e. hz(ﬁ) = lz + 7“2'101 + .-+ rian

[;: Nominal extension (at 8 = 0)
rij: radius of the j-th joint pulley

h’l
N

A simple tendon-driven finger

1
ho /><<@ Consists of linkages, tendons, gears, and pulleys
h3

. L 4
- joint 1 joint 2
hy




4, Kinematics and Statics of Tendon Actuation

Inelastic Tendons

* Introduce a mechanism to carry forces from an actuator to the appropriate joint.

* Model the routing of each tendon by an extension function:
O hi: Q - R
°© It measures the displacement of tendon end and the joint angles of the finger

°i.e. hz(ﬁ) = lz + 7“2'101 + .-+ rian

[;: Nominal extension (at 8 = 0)
rij: radius of the j-th joint pulley

h’l
N

A finger which is actuated by

1
ha \/ >< a set of inelastic tendons
}13 ( ‘ <@

. L 4
- joint 1 joint 2
hy




4. Kinematics and Statics of Tendon Actuation

Inelastic Tendons

* Finger examples and their extension functions

 Extension functions:

hy

t

ha

h2(9) =y + RH, 0 > 0.

Example of tendon routing with non
linear extension function

hi =11 + 2V a? + b2 (:os(tan_1 (Ig

)

has =14+ R101 + R26s

Planar tendon-driven finger

h1(0) = 11 + 2/ a? + b? cos (tan_l (

a
b

2!

)

L0
2

2)—2b—R202

)—zb 6 >0

6, > 0.



4, Kinematics and Statics of Tendon Actuation

Inelastic Tendons

* Let’s define the relationships between the tendon forces and the joint torques using tendon
extension functions.

o Tendon extensions vectors with p tendons: e = h(6) € RP

T
o Define coupling matrix: P(0) = % (0) mapping tendon forces and the joint torques

°© S0 ¢é= %(9)9’ = PT(6)6.

© Since work done by the tendons must equal that done by the fingers (conservation of
energy): T — P(@)f where f € RP? is the force applied to the tendons tends.
J J

l J\
* Combined kinematics and dynamics:

M(0)0+C(6,0)0 + N(0,0) = P(0)f




4. Kinematics and Statics of Tendon Actuation 4.1. Inelastic tendons

Inelastic Tendons

T=FP0)f

Joint Coupling Tendon
torques matrix  forces

- M(0)0 4+ C(0,0)0 + N(6,0) =

* An example

° Extension function
ho = ly — R0, hi =11 +2vVa? + b? cos(t:an_1 (ﬁ) - 3) — 2b — R90,
hs =13+ R1601.  hy =14+ R101 + Robs

© Coupling matrix

P(0) = @T _ —+va? + b? sin(tan™! (%) + %1) —-R, Ry Ry
00 —Ro 0 0 R



4. Kinematics and Statics of Tendon Actuation

Elastic Tendons

* Applying a single spring element at the base of the tendon:

* Extension functions

hi =11 + 711101 — r1202

hg = lo — 110,

€1 h / / O
e.“/\/\/nol—\ 13 = 3 T 13101

= 1 { ‘ t
es ho ><<@ hgy =14 — 14101 + 14202,
€3 hB A . .
e A 7 4 * Coupling Matrix
GQW— joint 1 joint 2
€4 4 T

P(H) - oh o ™1 —T21 T31 —Ta

Planar finger with position-controlled
elastic tendons

N @ - —T12 O O T'49

* We also want to establish the relationship between
tendon extension and the joint torques using a new
coupling matrix



4. Kinematics and Statics of Tendon Actuation

Elastic Tendons

» Let’s define the relationships between the tendon extension and the joint torques using a new

coupling matrix.
* Extension of the tendon as commanded by the actuator: ¢;
» Extension of the tendon due to the mechanism: h;(0)
* Net force applied to tendons: f; = k;(e; + h;(0) — h;(0))
* Define K: diagonal matrix of tendon stiffnesses, where k; is the stiffness of i-th tendon
f = K(e+ h(0) — h(0))

* Write dynamics:

M(0) + C(0,0)0 + N(0,0) + PK(h() — h(0)) = PKe

Models the stiffness of the  New coupling
tendon network matrix

S(0) :== PK(h(6) —h(0)) Q := PK




4. Kinematics and Statics of Tendon Actuation

Elastic Tendons

€1 h
Qe,Q = PK VRS :
— O — -2 2
=8¢ R0 =<0
. A 4
Joint New Tendon <o W-e—7" joint 1 joint 2
. €4 4
couplin '
torques maF’)trixg extension Planar finger with position-controlled

elastic tendons

- M)+ C(6,0)0 + N(0,0) + PK(h(#) — h(0)) = PKe
* An example (top-right finger):

© We already wrote the extension functionhy, h,, h3, h, and coupling matrix P(60)

o Stiffness matrix - © Qverall stiffness:
kk 0 0 0 S(0) = PK(h(0) — h(0))
0 ke 0 0 , .. , ..
K= 0 0 k3 O _ kl"’fl + /f:z”’:fl + 7‘737’:‘%1 + k4"‘f1 —’fl"‘u’{’l:z - k4{‘417‘42 P
0 0 0 ky —kiriiri2 — karaiTao kiriy + kardy

© New coupling matrix that mapping joint torques and tendon extension

B | kirin —kaoror ksrsr —karg
Q_PK_ —k'l’l“lg O O ]{347‘42



4, Kinematics and Statics of Tendon Actuation

Control of Tendon-Driven Fingers

* First, define a tendon network is force-closure:
o For any T € R" there exists a set of forces f € RP such that

PO)f=T1 and fi>0,1=1,...,p.

© So the necessary and sufficient condition is P be surjective and there exist a strictly positive
vector of internal forces fy € R?, fy; > 0 such that P(0) fy = 0

* Verify the necessary number of tendons to construct a force-closure tendon network:

© “N+1” tendon configuration:
* N tendons which generate torques in the opposite direction
e | tendon which pulls on all of the joints in one direction
o “2N”" tendon configuration:
* 2 tendons to each joint (total N joints), acting in opposite directions



4, Kinematics and Statics of Tendon Actuation

Control of Tendon-Driven Fingers

* Next, write the tendon forces for inelastic tendons:

f=P(O)T+ fn

— —
pseudo-inversed Internal forces to
coupling matrix ensureallh > 0

* Also, let’s move on to elastic tendons:
© We must solve the following equations:
P(O)Ke =71 and e; +h;(0)—h;(0) >0,2=1,...,p.

© How to solve: assume tendon network is force-closure, there exists a vector of extensions

ey € RP such that ey ; > 0 and PKey = 0, so we will choose very large ey we can obtain:

e=(PK)"t+en



5. Control of Robot Hand Outline

Contents of This Talk

* Recall

* Lagrange’s Equations with Constraints

* Robot Hand Dynamics

 Redundant and Nonmanipulable Robot Systems
* Kinematics and Statics of Tendon Actuation

e Control of Robot Hand

© Extending controllers
© Hierarchical control structures



5. Control of Robot Hand

CO n t ro I f()r(.'(.‘s 111()t‘i()ns
desired and and
behavior torques | dynamics of forces
* Recall some definition in Chapter 4: —*>| controller > m‘\‘};‘(‘ni‘l‘l‘l‘jm
* Position control: given a designed trajectory, how should the
joint torques be chosen to follow that trajectory?

°© Desired motion: 84 A simple model of robot closed-

loop control system

© Actual motion: 6

©Error:e =60,; — 0

© Constant gain matrices: K, K,

© Dynamics (without constraints): M(Q)é +C(0, 9)9 + N(9, 9) =T
o Computed torque control law: 7 = M(0) (éd — K,é — er) +C(6,0)0 + N(6,0)

o Computing torque 7 = J\I(H)éd +CO+ N+ M(0) (—K,e — Kpe)

~"

Ttf Tfb



5. Control of Robot Hand

Control

* Here, we consider robot hand control as control problems with constraints

Goal How to achieve?

i. Tracking a given object/workspace trajectory Find joint torques which satisfy the tracking requirement

Add sufficient internal forces to keep the contact forces

ii. Maintaining a desired internal force . . .
8 inside the appropriate friction cones

e \We derived dvnamics of this kind of constrained svstem

M(q)i +C(q,4)& + N(g,q) = F=GJ ™"
© Error: e = x — xq4

e Let’s achieve these two goal one by one



5. Control of Robot Hand

I. Tracking Trajectory

M(q)i+C(q,¢)i+ N(q,4) =F =GJ '

* Given a desired workspace trajectory x;(+)
© Computed torque controller:
F'=M(q) (Zq — Kvé — Kpe) + C(q,4)z + N(q, q)
o From F = G.J 17 we can find 7 than satisfying F (actually we could find extra 7 that
corresponds to internal forces)

o Solve for T:

T=J'GTF+J" [y



5. Control of Robot Hand

ii. Maintaining Internal Forces

M(q)i+C(q.¢)& + N(q,q) =F=GJ "7

* fy must be chosen such that the net contact force lies in the friction cone FC

* Two ways to solve for internal forces

© Method 1: compute final control law

T = JEGH_F + Jng,d

© Method 2: measure the applied internal forces and adjust f using a second feedback control

law.

f:fd+a/(f—fd)dt



5. Control of Robot Hand

Hierarchical Control Structures

* A multifingered robot hand can be modeled as a set of robots which are coupled to each other

and an object by a set of velocity constraints

* Let’s establish the control system following these steps:

1.

2
3.
4

Defining robots
Attaching robots
Controlling robots

Building hierarchical controllers



5. Control of Robot Hand

5.2. Hierarchical control structures

Hierarchical Control Structures

Defining robots
Attaching robots
Controlling robots

Building hierarchical controllers

Id—'b

h.(gd,l‘d) =10 O

Td = -]TG+Fd I

2l h(0,2) =0

| T F=GJ Tt

0, Finger ¢
1

-

4 A‘f],Cl,Nl

0, Finger ¢
2

-

" M,, Cy, No

Payload
M, C,, N,




5. Control of Robot Hand

5.2. Hierarchical control structures

Hierarchical Control Structures

Defining robots
Attaching robots
Controlling robots

Building hierarchical controllers

Ld

control
law

robot
object

M,C,N




5. Control of Robot Hand 5.2. Hierarchical control structures

box trajectory

Hierarchical Control Structures

Computed

torque
1. Defining robots ‘ 7 ;
Ty i J
. : Graspin
2. Attaching robots Constfaingt
3. Controlling robots / \
4. Building hierarchical controllers
Feed- B
A forward ox
N4 !
- Finger
Hand: asks for current state, x;, and x kinematics
Finger: ask for current state, s and ;
Left: read current state, 6; and 6, / \
Right: read current state, 6, and 6, PD PD
Finger: :Lfalf A f(elaer)a‘](elaer) ‘
Hand: xp, 25 <+ g(xy), G+T:bf. Left Right
finger finger




