A mathematical Introduction to Robotic Manipulation

輪講第六章

発表者：Zhang Xinyi（張馨芸）
2021．10．8＠マニピュレーション若手の会•勉強会

Some References

- Besides this book, I made this slides under the references of other two books:

A Mathematical Introduction to Robotic Manipulation

Introduction to Robotics
Mechanics and Control

Modern Robotics

Chapter 6: Hand Dynamics and Control

Contents	Goal
1. Lagrange's Equations with Constraints	Calculate the dynamics of a mechanical system subject to Pfaffian constraints
2. Robot Hand Dynamics	Derive the equations of motion for a multifingered hand manipulating an object
3. Redundant and Nonmanipulable Robot Systems	Derive more complex equations of motion for redundant or nonmanipulable robot system
4. Kinematics and Statics of Tendon actuation	Describe the kinematics of tendon-driven systems
5. Control of Robot Hands	Introduce an extended control law for constraints-involved system and other control structures

Contents of This Talk

- Recall
- Lagrange's Equations with Constraints
- Robot Hand Dynamics
- Redundant and Nonmanipulable Robot Systems
- Kinematics and Statics of Tendon Actuation
- Control of Robot Hand

Contents of This Talk

- Recall
- Chapter 4 Robot Dynamics and Control
- Chapter 5 Multifingered Hand Kinematics
- Lagrange's Equations with Constraints
- Robot Hand Dynamics
- Redundant and Nonmanipulable Robot Systems
- Kinematics and Statics of Tendon Actuation
- Control of Robot Hand

Recall

- We only need to recall Jacobian

The manipulator Jacobian relates the joint velocities $\dot{\theta}$ to the endeffector velocity $V_{s t}$ and the joint torques τ to the end-effector wrench F :

$$
\begin{array}{lll}
V_{s t}^{s}=J_{s t}^{s}(\theta) \dot{\theta} & \tau=\left(J_{s t}^{s}\right)^{T} F_{s} & \text { (spatial) } \\
V_{s t}^{b}=J_{s t}^{b}(\theta) \dot{\theta} & \tau=\left(J_{s t}^{b}\right)^{T} F_{t} & \text { (body). }
\end{array}
$$

If the manipulator kinematics is written using the product of exponentials formula, then the manipulator Jacobians have the form:

$$
\begin{array}{rlrl}
J_{s t}^{s}(\theta) & =\left[\begin{array}{llll}
\xi_{1} & \xi_{2}^{\prime} & \cdots & \xi_{n}^{\prime}
\end{array}\right] & \xi_{i}^{\prime}=\operatorname{Ad}\left(e^{\widehat{\xi}_{1} \theta_{1}} \ldots e^{\widehat{\xi}_{i-1} \theta_{i-1}}\right) & \xi_{i} \\
J_{s t}^{b}(\theta) & =\left[\begin{array}{llll}
\xi_{1}^{\dagger} & \cdots & \xi_{n-1}^{\dagger} & \xi_{n}^{\dagger}
\end{array}\right] & \left.\xi_{i}^{\dagger}=\operatorname{Ad}_{\left(e^{-1} \widehat{\xi}_{i} \theta_{i}\right.}^{\cdots} e^{\widehat{\xi}_{n} \theta_{n}} g_{s t}(0)\right)
\end{array} \xi_{i} .
$$

Recall

- Robotic dynamics: deriving the equation of motion including q, \dot{q}, \ddot{q} and τ
- Forward dynamics: find joint accelerations
- Given q, \dot{q} and τ, find \ddot{q}
- Inverse dynamics: find joint forces and torques
- Given q, \dot{q} and \ddot{q}, find τ
- Two approaches for solving robot dynamics problem.

1. Lagrange's equations

- Energy-based
- Determine and exploit structural properties of the dynamics

2. Newton-Euler equations

- Rely on $f=m a$
- Often used for numerical solution of forward/inverse dynamics

1．The equations of motion for a mechanical system with Lagrangian $L=T(q, \dot{q})-V(q)$ satisfies Lagrange＇s equations：
－Lagrange＇s equation

$$
\frac{d}{d t} \frac{\partial L}{\partial \dot{q}_{i}}-\frac{\partial L}{\partial q_{i}}=\Upsilon_{i}
$$

where $q \in \mathbb{R}^{n}$ is a set of generalized coordinates for the system and $\Upsilon \in \mathbb{R}^{n}$ represents the vector of generalized external forces．

－Newton－Euler equations

－m ：mass of the body，assume origin of $\{b\}=C o M$
－F^{b} ：total force and moment acting on the body
－$m v^{b}$ ：linear momentum of the body
－ $\mathcal{I} \omega^{b}$ ：angular momentum of the body

2．The equations of motion for a rigid body with configuration $g(t) \in$ $S E(3)$ are given by the Newton－Euler equations：

$$
\left[\begin{array}{cc}
m I & 0 \\
0 & \mathcal{I}
\end{array}\right]\left[\begin{array}{c}
\dot{v}^{b} \\
\dot{\omega}^{b}
\end{array}\right]+\left[\begin{array}{c}
\omega^{b} \times m v^{b} \\
\omega^{b} \times \mathcal{I} \omega^{b}
\end{array}\right]=F^{b},
$$

where m is the mass of the body， \mathcal{I} is the inertia tensor，and $V^{b}=\left(v^{b}, \omega^{b}\right)$ and F^{b} represent the instantaneous body velocity and applied body wrench．
－Lagrange＇s equation for open－ chain robot manipulator

3．The equations of motion for an open－chain robot manipulator can be written as

慣性力＋遠心力・コリオリカ＋ポテンシャルエネルギーに伴う力
＝関節に加えられるトルクとそれ以外の力

$$
M(\theta) \ddot{\theta}+C(\theta, \dot{\theta}) \dot{\theta}+N(\theta, \dot{\theta})=\tau
$$

Recall

Common contact types

$$
F_{o}=G_{1} f_{c_{1}}+\cdots+G_{k} f_{c_{k}}=\left[\begin{array}{lll}
G_{1} & \cdots & G_{k}
\end{array}\right]\left[\begin{array}{c}
f_{c_{1}} \\
\vdots \\
f_{c_{k}}
\end{array}\right]
$$

Grasp map: map the contact forces to the total object force

Definition 5.2. Force-closure grasp
A grasp is a force-closure grasp if given any external wrench $F_{e} \in \mathbb{R}^{p}$ applied to the object, there exist contact forces $f_{c} \in F C$ such that

$$
G f_{c}=-F_{e} .
$$

Definition of force closure

Definition 5.3. Internal forces

If $f_{N} \in \mathcal{N}(G) \cap F C$, then f_{N} is an internal force. If $f_{N} \in \mathcal{N}(G)$ and $f_{N} \in \operatorname{int}(F C)$, then it is called a strictly internal force.

Definition of internal forces

$$
J_{h}\left(\theta, x_{o}\right) \dot{\theta}=G^{T}\left(\theta, x_{o}\right) \dot{x}_{o}
$$

Grasp constraints

Relationship between forces and velocities

Contents of This Talk

- Recall
- Lagrange's Equations with Constraints
- Pfaffian constraints
- Lagrange multipliers
- Lagrange-d'Alembert formulation
- The Nature of nonholonomoic constraints
- Robot Hand Dynamics
- Redundant and Nonmanipulable Robot Systems
- Kinematics and Statics of Tendon Actuation
- Control of Robot Hand

Constraints

- A constraint restricts the motion of the mechanical system by limiting the set of paths which the system can follow.
- e.g. An idealized planar pendulum $q=(x, y) \in \mathbb{R}^{2}$
- All trajectories of the particles must satisfy the algebraic constraint:

$$
x^{2}+y^{2}=l^{2}
$$

- This constraint acts via constraint forces, which modify the motion to insure the constraint is always satisfied.
- Holonomic constraint vs. nonholonomic constraint

Constraints

- Holonomic constraint vs. nonholonomic constraint
- Let's explain simply using some mechanical system examples with constraints

- Configuration space can be represented by vector:

$$
\circ(x, y, \theta) \in \mathbb{R}^{3}
$$

- These four joints always satisfy this equation:

$$
\dot{y}-\dot{x} \cdot \tan (\theta)=0
$$

- (Constraint involves velocity)
- It's a nonholonomic constraint this system could move between two arbitrary states with some constraint of velocity.

Constraints

- Holonomic constraint vs. nonholonomic constraint

Planar four-bar linkage

- Configuration space can be represented by vector:

$$
\circ\left(\theta_{1}, \theta_{2}, \theta_{3}, \theta_{4}\right) \in \mathbb{R}^{4}
$$

- These four joints always satisfy these equations:

$$
\begin{aligned}
L_{1} \cos \theta_{1}+L_{2} \cos \left(\theta_{1}+\theta_{2}\right)+\cdots+L_{4} \cos \left(\theta_{1}+\cdots+\theta_{4}\right) & =0, \\
L_{1} \sin \theta_{1}+L_{2} \sin \left(\theta_{1}+\theta_{2}\right)+\cdots+L_{4} \sin \left(\theta_{1}+\cdots+\theta_{4}\right) & =0, \\
\theta_{1}+\theta_{2}+\theta_{3}+\theta_{4}-2 \pi & =0 .
\end{aligned}
$$

- Degree of Freedom: one
- It's a holonomic constraint because it reduces degrees of freedom in the system

Holonomic/Nonholonomic Constraint

- If we set
- n : dimensions of configuration space $q=\left(q_{1}, \ldots, q_{n}\right)$
- k : number of independent constraints
- A question: whether the system could be moved between two arbitrary states without violating the velocity constraint?
- Holonomic constraints can be represented locally as algebraic constraints:
- $h(q)=0, h: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}$
- Answer: No
- Nonholonomic constraints can be represented as
- $h(q, \dot{q})=0$
- Answer: Yes

Holonomic constraint

- Holonomic constraints can be represented locally as algebraic constraints:
- $h(q)=0, h: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}$
- And the matrix $\frac{\partial h}{\partial q}=\left[\begin{array}{ccc}\frac{\partial h_{1}}{\partial q_{1}} & \cdots & \frac{\partial h_{1}}{\partial q_{n}} \\ & \ddots & \\ \frac{\partial h_{k}}{\partial q_{1}} & \cdots & \frac{\partial h_{k}}{\partial q_{n}}\end{array}\right]$ is full row rank
- Constraint force $\Gamma=\frac{\partial h^{T}}{\partial q} \lambda$,
- Constraint forces do no work (will be explained later)

Pfaffian constraint

- Pfaffian constraint: generally we write velocity constraints as:
$A(q) \dot{q}=0, \quad$ where $A(q) \in \mathbb{R}^{k \times n}$ represents a set of k velocity constraints.
- This is the form of However, if there exist a vector-valued function $h: Q \rightarrow \mathbb{R}^{k}$ such that
- $A(q) \dot{q}=0 \quad \Longleftrightarrow \quad \frac{\partial h}{\partial q} \dot{q}=0$.
- Pfaffian constraint is integrable
- Pfaffian constraint is equivalent to a holonomic constraint
- Otherwise, pfaffian constraint which is not integrable is an example of a non-holonomic constraint (not all).
- Constraint forces $\Gamma=A^{T}(q) \lambda$,

Dynamics with Constraints

- Goal: derive the equations of motion for a mechanical system with configuration $q \in \mathbb{R}^{n}$ subject to a set of Pfaffian constraints.
- Mechanical system: constraints are everywhere smooth and linearly
- Lagrangian: $L(q, \dot{q})$ kinetic energy minus potential energy
- Constraint: $A(q) \dot{q}=0 \quad A(q) \in \mathbb{R}^{k \times n}$.
- Let's write the equations of motion considering the constraint can affects the motion additionally:

$$
\frac{d}{d t} \frac{\partial L}{\partial \dot{q}}-\frac{\partial L}{\partial q}+\underbrace{A^{T}(q) \lambda}_{\begin{array}{c}
\text { Constraint } \\
\text { forces }
\end{array}}-\Upsilon=0
$$

- $\lambda_{i}, \ldots, \lambda_{k}$: relative magnitudes of constraint forces, also called Lagrange multipliers

Dynamics with Constraints

- 3 Steps for calculating the equation of motion with constraints
(1) Write the equations of motion (done, but Lagrange multipliers are unknown)
(2) Solve these multipliers because each λ_{i} will be a function with q, \dot{q}, Υ
(3) Substituting them back into the equations of motion
- We will show how to solve the multipliers λ in (2):
- Differentiate the constraint equation $A(q) \dot{q}=0 \quad$ (6.3) $\Rightarrow A(q) \ddot{q}+\dot{A}(q) \dot{q}=0$ (6.3.1)
- Write Lagrange's equations like this $M(q) \ddot{q}+C(q, \dot{q}) \dot{q}+N(q, \dot{q})+A^{T}(q) \lambda=F, \quad$ (6.5)
- Solve (6.5) for \ddot{q} and substitute into (6.3.1), and we will get

$$
\left(A M^{-1} A^{T}\right) \lambda=A M^{-1}(F-C \dot{q}-N)+\dot{A} \dot{q},
$$

If constraints are independent, this matrix is full rank

- So finally $\quad \lambda=\left(A M^{-1} A^{T}\right)^{-1}\left(A M^{-1}(F-C \dot{q}-N)+\dot{A} \dot{q}\right)$.

Dynamics with Constraints

- Configuration $q=(x, y) \in \mathbb{R}^{2}$
- Constraint $x^{2}+y^{2}=l^{2}$
(1) Write the equations of motion
(2) Solve these multipliers
(3) Substituting them back into the equations of motion
- Pfaffian constraint $\underbrace{\left[\begin{array}{ll}x & y\end{array}\right]}_{A(q)}\left[\begin{array}{l}\dot{x} \\ \dot{y}\end{array}\right]=0$
- No constraint Lagrangian $L(q, \dot{q})=\frac{1}{2} m\left(\dot{x}^{2}+\dot{y}^{2}\right)-m g y$.
- Substitude these formulation into $\frac{d}{d t} \frac{\partial L}{\partial \dot{q}}-\frac{\partial L}{\partial q}+A^{T}(q) \lambda=0$,
- So Lagrangian with constraint will be:

Unknown, let's

Dynamics with Constraints

(1) Write the equations of motion
(2) Solve these multipliers
(3) Substituting them back into the equations of motion

- Solve Lagrange Multipliers using this:

$$
\begin{aligned}
\lambda & =\left(A M^{-1} A^{T}\right)^{-1}\left(A M^{-1}(Q-C \dot{q}-N)-\dot{A} \dot{q}\right) \\
& =\frac{m}{x^{2}+y^{2}}\left(-g y-\dot{x}^{2}-\dot{y}^{2}\right)=-\frac{m}{l^{2}}\left(g y+\dot{x}^{2}+\dot{y}^{2}\right)
\end{aligned}
$$

Dynamics with Constraints

(1) Write the equations of motion
(2) Solve these multipliers
(3) Substituting them back into the equations of motion

$$
\begin{aligned}
& {\left[\begin{array}{cc}
m & 0 \\
0 & m
\end{array}\right]\left[\begin{array}{c}
\ddot{x} \\
\ddot{y}
\end{array}\right]+\left[\begin{array}{c}
0 \\
m g
\end{array}\right]+\left[\begin{array}{c}
x \\
y
\end{array}\right] \lambda=0 } \\
& \searrow_{-\frac{m}{l^{2}}\left(g y+\dot{x}^{2}+\dot{y}^{2}\right)}
\end{aligned}
$$

- Finally the equations of motion are:

$$
\left[\begin{array}{cc}
m & 0 \\
0 & m
\end{array}\right]\left[\begin{array}{c}
\ddot{x} \\
\ddot{y}
\end{array}\right]+\left[\begin{array}{c}
0 \\
m g
\end{array}\right]-\frac{1}{l^{2}}\left[\begin{array}{c}
x \\
y
\end{array}\right]\left(m g y+m\left(\dot{x}^{2}+\dot{y}^{2}\right)\right)=0
$$

Dynamics with Constraints

(1) Write the equations of motion
(2) Solve these multipliers
(3) Substituting them back into the equations of motion

$$
\left[\begin{array}{cc}
m & 0 \\
0 & m
\end{array}\right]\left[\begin{array}{c}
\ddot{x} \\
\ddot{y}
\end{array}\right]+\left[\begin{array}{c}
0 \\
m g
\end{array}\right]-\frac{1}{l^{2}}\left[\begin{array}{l}
x \\
y
\end{array}\right]\left(m g y+m\left(\dot{x}^{2}+\dot{y}^{2}\right)\right)=0 .
$$

- This is a second-order differential equation in two variables x, y
- But system only has one degree of freedom

- Thus, we have increased the number of variables required to represent the motion of the system.
- Additionally, we can obtain constraint force: tension T in the rod:

$$
\text { Tension }=\left\|\left[\begin{array}{l}
x \\
y
\end{array}\right] \lambda\right\|=\frac{m g}{l} y+\frac{m}{l}\left(\dot{x}^{2}+\dot{y}^{2}\right)
$$

Lagrange-D'Alembert Equation

This example can show that constraint forces do no work

- D'Alembert's principle: constraint forces do no work for any instantaneous motion which satisfies the constraints.
- Given configuration $\boldsymbol{q} \in \mathbb{R}^{n}$,
- Virtual displacement $\delta \boldsymbol{q} \in \mathbb{R}^{n}$, an arbitrary infinitesimal displacement which satisfies the constraints $A(q) \delta q=0$.

$$
\left(A^{T}(q) \lambda\right) \cdot \delta q=0
$$

- The reason why we introduce D'Alembert's principle:
- Solving equations of motion without calculating constraint forces?
- Obtain a more concise equation of the dynamics

$$
\frac{d}{d t} \frac{\partial L}{\partial \dot{q}}-\frac{\partial L}{\partial q}+\underbrace{}_{\begin{array}{c}
\text { Constraint } \\
\text { forces }
\end{array} \underbrace{A^{T}(q) \lambda}_{\begin{array}{c}
\text { Nonconservative and } \\
\text { externally applied } \\
\text { forces }
\end{array}}-\Upsilon=0,} \quad \Rightarrow \quad\left(\frac{d}{d t} \frac{\partial L}{\partial \dot{q}}-\frac{\partial L}{\partial q}-\Upsilon\right) \cdot \delta q=0
$$

Lagrange-D'Alembert Equation

- Let's use Lagrange-d'Alembert equation to solve the dynamics for a rolling disk

A rolling disk that rolls without slipping

- Configuration $q=(x, y, \theta, \phi)$
- Velocity constraints

$$
\begin{array}{r}
\dot{x}-\rho \cos \theta \dot{\phi}=0 \\
\dot{y}-\rho \sin \theta \dot{\phi}=0
\end{array} \quad \text { or } \quad A(q) \dot{q}=\left[\begin{array}{cccc}
1 & 0 & 0 & -\rho \cos \theta \\
0 & 1 & 0 & -\rho \sin \theta
\end{array}\right] \dot{q}=0 .
$$

${ }^{\circ} \tau_{\theta}$: driving torque on the wheel
${ }^{\circ} \tau_{\phi}$: steering torque (about the vertical axis)
${ }^{\circ} \mathcal{I}_{\infty}$: inertia about the horizontal (rolling) axis

- \mathcal{I}_{\in} :inertia about the vertical axis
- Lagrangian will be:

$$
L(q, \dot{q})=\frac{1}{2} m\left(\dot{x}^{2}+\dot{y}^{2}\right)+\frac{1}{2} \mathcal{I}_{\infty} \dot{\theta}^{\epsilon}+\frac{\infty}{\epsilon} \mathcal{I}_{\in} \dot{\phi}^{\epsilon} . \Leftrightarrow L(q, \dot{q})=\frac{1}{2}\left(\dot{x}^{2}+\dot{y}^{2}\right)+\frac{1}{2} \mathcal{I}_{\infty} \dot{\theta}^{2}+\frac{1}{2} \mathcal{I}_{\in} \dot{\phi}^{2}
$$

Lagrange-D'Alembert Equation

(1) Write the equations of motion
(2) Reduce the configuration
(3) Further simplify the equation

- Virtual displacement $\delta q=(\delta x, \delta y, \delta \theta, \delta \phi)$
- Lagrange-d'Alembert equations

$$
\left(\left[\begin{array}{ccc}
{ }^{m} & & 0 \\
& & \\
& & \mathcal{I}_{\infty} \\
& & \\
& & \mathcal{I}_{\epsilon}
\end{array}\right] \ddot{q}-\left[\begin{array}{c}
0 \\
0 \\
\tau_{\theta} \\
\tau_{\phi}
\end{array}\right]\right) \cdot \delta q=0 \quad \text { where } \quad\left[\begin{array}{cccc}
1 & 0 & 0 & -\rho \cos \theta \\
0 & 1 & 0 & -\rho \sin \theta
\end{array}\right] \delta q=0 .
$$

Lagrange-D'Alembert Equation

(1) Write the equations of motion
(2) Reduce the configuration
(3) Further simplify the equation

- Virtual displacement $\delta q=(\delta x, \delta y, \delta \theta, \delta \phi)$
- Lagrange-d'Alembert equations

$$
\begin{aligned}
& \left(\left[\begin{array}{ccc}
{ }^{m} & 0 & 0 \\
& m & \mathcal{I}_{\infty} \\
& 0 & \\
& & \\
\mathcal{I}_{\epsilon}
\end{array}\right] \ddot{q}-\left[\begin{array}{c}
0 \\
0 \\
\tau_{\theta} \\
\tau_{\phi}
\end{array}\right]\right) \cdot \delta q=0 \text { where } \quad\left[\begin{array}{cccc}
1 & 0 & 0 & -\rho \cos \theta \\
0 & 1 & 0 & -\rho \sin \theta
\end{array}\right] \delta q=0 . \\
& \delta x=\rho \cos \theta \delta \phi \\
& \delta y=\rho \sin \theta \delta \phi . \\
& \text { - Equation can be written without } \delta x, \delta y \\
& \delta y=\rho \sin \theta \delta \phi .
\end{aligned}
$$

$$
\left(\left[\begin{array}{cc}
0 & 0 \\
m \rho \cos \theta & m \rho \sin \theta
\end{array}\right]\left[\begin{array}{l}
\ddot{x} \\
\ddot{y}
\end{array}\right]+\left[\begin{array}{cc}
\mathcal{I}_{\infty} & 0 \\
0 & \mathcal{I}_{\epsilon}
\end{array}\right]\left[\begin{array}{c}
\ddot{\theta} \\
\ddot{\phi}
\end{array}\right]-\left[\begin{array}{c}
\tau_{\theta} \\
\tau_{\phi}
\end{array}\right]\right) \cdot\left[\begin{array}{l}
\delta \theta \\
\delta \phi
\end{array}\right]=0,
$$

- Since $\delta \theta, \delta \phi$ are free, the dynamics become:

$$
\left[\begin{array}{cc}
0 & 0 \\
m \rho \cos \theta & m \rho \sin \theta
\end{array}\right]\left[\begin{array}{l}
\ddot{x} \\
\ddot{y}
\end{array}\right]+\left[\begin{array}{cc}
\mathcal{I}_{\infty} & 0 \\
0 & \mathcal{I}_{\in}
\end{array}\right]\left[\begin{array}{l}
\ddot{\theta} \\
\ddot{\phi}
\end{array}\right]=\left[\begin{array}{c}
\tau_{\theta} \\
\tau_{\phi}
\end{array}\right]
$$

Lagrange-D'Alembert Equation

(1) Write the equations of motion
(2) Reduce the configuration
(3) Further simplify the equation

- We have dynamics equation:

$$
\left[\begin{array}{cc}
0 & 0 \\
m \rho \cos \theta & m \rho \sin \theta
\end{array}\right]\left[\begin{array}{l}
\ddot{x} \\
\ddot{y}
\end{array}\right]+\left[\begin{array}{cc}
\mathcal{I}_{\infty} & 0 \\
0 & \mathcal{I}_{\in}
\end{array}\right]\left[\begin{array}{l}
\ddot{\theta} \\
\ddot{\phi}
\end{array}\right]=\left[\begin{array}{c}
\tau_{\theta} \\
\tau_{\phi}
\end{array}\right]
$$

- We can eliminate \dot{x}, \dot{y} and \ddot{x}, \ddot{y} by differentiating the constraints

$$
\begin{array}{r}
\dot{x}-\rho \cos \theta \dot{\phi}=0 \\
\dot{y}-\rho \sin \theta \dot{\phi}=0
\end{array} \quad \Rightarrow \quad \begin{aligned}
& \ddot{x}=\rho \cos \theta \ddot{\phi}-\rho \sin \theta \dot{\theta} \dot{\phi} \\
& \ddot{y}=\rho \sin \theta \ddot{\phi}+\rho \cos \theta \dot{\theta} \dot{\phi},
\end{aligned}
$$

- Finally, it's second-order differential equation in θ and ϕ

$$
\left[\begin{array}{cc}
\mathcal{I}_{\infty} & 0 \\
0 & \mathcal{I}_{\in}+\mathbb{I} \rho^{\in}
\end{array}\right]\left[\begin{array}{l}
\ddot{\theta} \\
\ddot{\phi}
\end{array}\right]=\left[\begin{array}{c}
\tau_{\theta} \\
\tau_{\phi}
\end{array}\right],
$$

Lagrange-D'Alembert Equation

(1) Write the equations of motion
(2) Reduce the configuration
(3) Further simplify the equation

- Let's summarize this rolling disk dynamics (a nonholonomic system).
- Given the trajectory of θ and ϕ, we can determine the trajectory of the disk as it rolls along the plane.
- The equation of motion is $1+2$

1. A second-order equations in a reduced set of variables plus

$$
\left[\begin{array}{cc}
\mathcal{I}_{\infty} & 0 \\
0 & \mathcal{I}_{\in}+\hat{I} \rho^{\in}
\end{array}\right]\left[\begin{array}{l}
\ddot{\theta} \\
\ddot{\phi}
\end{array}\right]=\left[\begin{array}{c}
\tau_{\theta} \\
\tau_{\phi}
\end{array}\right]
$$

2. A set of first-order equations

$$
\begin{aligned}
\dot{x} & =\rho \cos \theta \dot{\phi} \\
\dot{y} & =\rho \sin \theta \dot{\phi}
\end{aligned}
$$

Lagrange-D'Alembert Equation

- Let's wrap it up with mathematical formulations
- Goal: get a more explicit description of the dynamics
- Lagrange-d'Alembert equation $\left(\frac{d}{d t} \frac{\partial L}{\partial \dot{q}}-\frac{\partial L}{\partial q}-\Upsilon\right) \cdot \delta q=0$, where $\delta q \in \mathbb{R}^{n}$ satisfies $A(q) \delta q=0$.
- Rewrite these:

$$
A(q)=\left[\begin{array}{ll}
A_{1}(q) & A_{2}(q)
\end{array}\right], \quad q=\left(q_{1}, q_{2}\right) \in \mathbb{R}^{n-k} \times \mathbb{R}^{k}
$$

- So that we can use ∂q_{1} to eliminate ∂q_{2}. (∂q_{1} is free or unconstrainted)

$$
\begin{aligned}
& A(q) \cdot \delta q=0 \quad \Longleftrightarrow \quad \delta q_{2}=-A_{2}^{-1}(q) A_{1}(q) \delta q_{1}, \\
& \left(\frac{d}{d t} \frac{\partial L}{\partial \dot{q}}-\frac{\partial L}{\partial q}-\Upsilon\right) \cdot \delta q \\
& \quad=\left(\frac{d}{d t} \frac{\partial L}{\partial q_{1}} \frac{\partial L}{\partial q_{1}} \Upsilon_{1}\right) \cdot \delta q_{1}+\left(\frac{d}{d t} \frac{\partial L}{\partial \dot{q}_{2}}-\frac{\partial L}{\partial q_{2}}-\Upsilon_{2}\right) \cdot \delta q_{2} \\
& \quad=\left(\frac{d}{d t} \frac{\partial L}{\partial q_{1}} \frac{\partial L}{\partial q_{1}}-\Upsilon_{1}\right) \cdot \delta q_{1}+\left(\frac{d}{d t} \frac{\partial L}{\partial q_{2}} \frac{\partial L}{\partial q_{2}}-\Upsilon_{2}\right) \cdot\left(-A_{2}^{-1} A_{1}\right) \delta q_{1},
\end{aligned}
$$

- We can eliminate $\dot{q}_{2}, \ddot{q}_{2}$ using the constraint $\dot{q}_{2}=-A_{2}^{-1} A_{1} \dot{q}_{1}$

Nonholonomic System

- When we calculate the dynamics for a mechanical system with nonholonomic system
- Wrong: directly substitute the constraints to the equations of motion to eliminate the constraints
- For example:
- Configuration $\quad q=(r, s) \in \mathbb{R}^{2} \times \mathbb{R}$
- Constraints $\dot{s}+a^{T}(r) \dot{r}=0 \quad a(r) \in \mathbb{R}^{2}$, (nonholonomic)
- Lagrangian $\quad L_{c}(r, \dot{r})=L\left(r, \dot{r},-a^{T}(r) \dot{r}\right)$. (for simplicity, assume it doesn't depend on s)
- Substitute Lagrangian to the Lagrange-d'Alembert equation

$$
\frac{d}{d t} \frac{\partial L_{c}}{\partial \dot{r}_{i}}-\frac{\partial L_{c}}{\partial r_{i}}=0 \quad i=1,2 . \Rightarrow \frac{d}{d t}\left(\frac{\partial L}{\partial \dot{r}_{i}}-a_{i}(r) \frac{\partial L}{\partial \dot{s}}\right)-\left(\frac{\partial L}{\partial r_{i}}-\frac{\partial L}{\partial \dot{s}} \sum_{j} \frac{\partial a_{j}}{\partial r_{i}} \dot{r}_{j}\right)=0
$$

- Rearranging terms and we obtain:

$$
\left(\frac{d}{d t} \frac{\partial L}{\partial \dot{r}_{i}}-\frac{\partial L}{\partial r_{i}}\right)-a_{i}(r)\left(\frac{d}{d t} \frac{\partial L}{\partial \dot{s}}-\frac{\partial L}{\partial s}\right)=\frac{\partial L}{\partial \dot{s}}\left(\dot{a}_{i}(r)-\sum_{j} \frac{\partial a_{j}}{\partial r_{i}} \dot{r}_{i}\right)
$$

Nonholonomic System

- When we calculate the dynamics for a mechanical system with nonholonomic system
- Wrong: directly substitute the constraints to the equations of motion to eliminate the constraints
- For example:
- Let's look at the final equations

$$
\left(\frac{d}{d t} \frac{\partial L}{\partial \dot{r}_{i}}-\frac{\partial L}{\partial r_{i}}\right)-a_{i}(r)\left(\frac{d}{d t} \frac{\partial L}{\partial \dot{s}}-\frac{\partial L}{\partial s}\right)=\frac{\partial L}{\partial \dot{s}}\left(\dot{a}_{i}(r)-\sum_{j} \frac{\partial a_{j}}{\partial r_{i}} \dot{r}_{i}\right)
$$

Exactly Lagrange-d'Alembert equation
Spurious terms

- If we directly substitute the constraints to the equations of motion, we will get these spurious terms, the final dynamic equations are wrong

Holonomic System

- When we calculate the dynamics for a mechanical system with nonholonomic system
- Wrong: directly substitute the constraints to the equations of motion to eliminate the constraints
- Is it still wrong for a holonomic system?
- We know the constraint is integrable, so that there exists $h(r)$ such that

$$
\dot{s}+a^{T}(r) \dot{r}=0 \quad a(r) \in \mathbb{R}^{2}, \quad \Rightarrow \quad a_{i}(r)=\frac{\partial h}{\partial r_{i}}
$$

- So that for the right side $\left(\frac{d}{d t} \frac{\partial L}{\partial \dot{r}_{i}}-\frac{\partial L}{\partial r_{i}}\right)-a_{i}(r)\left(\frac{d}{d t} \frac{\partial L}{\partial \dot{s}}-\frac{\partial L}{\partial s}\right)=\frac{\partial L}{\partial \dot{s}}\left(\dot{a}_{i}(r)-\sum_{j} \frac{\partial a_{j}}{\partial r_{i}} \dot{r}_{i}\right) \cdot$.

$$
\frac{\partial L}{\partial \dot{s}}\left(\dot{a}_{i}(r)-\sum_{j} \frac{\partial a_{j}}{\partial r_{i}} \dot{r}_{i}\right)=\frac{\partial L}{\partial \dot{s}}\left(\sum \frac{\partial^{2} h}{\partial r_{i} \partial r_{j}} \dot{r}_{j}-\sum \frac{\partial^{2} h}{\partial r_{j} \partial r_{i}} \dot{r}_{i}\right),=\mathbf{0}
$$

- So for a holonomic system, if we substitute the constraints to the equations of motion, we can still get a correct equations of motion

Contents of This Talk

- Recall some previous knowledge
- Lagrange's Equations with Constraints
- Robot Hand Dynamics
- Derivation and properties
- Internal forces
- Other robot systems
- Redundant and Nonmanipulable Robot Systems
- Kinematics and Statics of Tendon Actuation
- Control of Robot Hand

Equation of Motion

OWONIK ROBOTICS
$\left[\begin{array}{cc}m I & 0 \\ 0 & \mathcal{I}\end{array}\right]\left[\begin{array}{c}\dot{v}^{b} \\ \dot{\omega}^{b}\end{array}\right]+\left[\begin{array}{c}\omega^{b} \times m v^{b} \\ \omega^{b} \times \mathcal{I} \omega\end{array}\right]=F^{b}$,
In Newton-Euler method: object $x_{o}=(p, R) \in S E(3)$
If object is subject to gravity alone:

$$
\left[\begin{array}{cc}
m I & 0 \\
0 & \mathcal{I}
\end{array}\right] \dot{V}^{b}+\left[\begin{array}{cc}
m \widehat{\omega}^{b} & 0 \\
0 & \frac{1}{2}\left(\widehat{\omega}^{b} \mathcal{I}-\mathcal{I} \widehat{\omega} \mathrm{L}\right)
\end{array}\right] V^{b}+\left[\begin{array}{c}
R^{T}(m \vec{g}) \\
0
\end{array}\right]=0,
$$

Equation of Motion

We have to convert object from $S E$ (3) to local coordinate, which is:
$x_{o}=(p, R) \in S E(3) \Rightarrow x \in \mathbb{R}^{6}$
So that the object dynamics can be written as:

$$
M_{o}(x) \ddot{x}+C_{o}(x, \dot{x}) \dot{x}+N_{o}(x, \dot{x})=0
$$

OWONIK ROBOTICS

$$
J_{h}(\theta, x) \dot{\theta}=G^{T}(\theta, x) \dot{x}, \quad \begin{aligned}
& \text { It's the relationship between the finger } \\
& \text { velocity and object velocity }
\end{aligned}
$$

Three assumptions of grasping

1) The grasp is force-closure and manipulable
2) The hand Jacobian is invertible
3) The contact forces remain in the friction cone at all times

Equation of Motion

Dynamics of the system

 (Apply Lagrangian-d'Alembert equation)Recall Lagrangian-d'Alembert equation

$$
\begin{gathered}
\left(\frac{d}{d t} \frac{\partial L}{\partial \dot{q}}-\frac{\partial L}{\partial q}-\Upsilon\right) \cdot \delta q=0 \\
A(q) \delta q=0
\end{gathered}
$$

- Configuration: $q=(\theta, x)$
- Lagrangian: $L=\frac{1}{2} \dot{\theta}^{T} M_{f} \dot{\theta}+\frac{1}{2} \dot{x}^{T} M_{o} \dot{x}-V_{f}(\theta)-V_{o}(x)$,
- Virtual displacement: $\delta q=(\delta \theta, \delta x)$
- Constraint: $J_{h}(\theta, x) \dot{\theta}=G^{T}(\theta, x) \dot{x}, \quad\left[\begin{array}{ll}-J_{h} & G^{T}\end{array}\right]\left[\begin{array}{c}\dot{\theta} \\ \dot{x}\end{array}\right]=0$
- Lagrange-d'Alembert equations:

Apply steps from last section to using Lagrangian-d'Alembert equation
(1) Write the equations of motion
(2) Reduce the configuration
(3) Further simplify the equation

$$
\begin{aligned}
\left(\frac{d}{d t} \frac{\partial L}{\partial \dot{q}}-\frac{\partial L}{\partial q}-\left[\begin{array}{l}
\tau \\
0
\end{array}\right]\right) \cdot \delta q & =\left[\begin{array}{c:c}
\frac{d}{d t} \frac{\partial L}{\partial \dot{\theta}}-\frac{\partial L}{\partial \theta}-\tau \\
\frac{d}{d t} \frac{\partial L}{\partial \dot{x}}-\frac{\partial L}{\partial x}
\end{array}\right] \cdot\left[\begin{array}{c}
\delta \theta \\
\delta x
\end{array}\right] \begin{array}{cc}
-J_{h} & \left.G^{T}\right]\left[\begin{array}{c}
\delta \theta \\
\delta x
\end{array}\right]=0 \\
\delta \theta=J_{h}^{-1} G^{T} \delta x
\end{array} \\
& =\left(\frac{d}{d t} \frac{\partial L}{\partial \dot{\theta}}-\frac{\partial L}{\partial \theta}-\tau\right) \cdot\left(J_{h}^{-1} G^{T} \delta x\right)+\left(\frac{d}{d t} \frac{\partial L}{\partial \dot{x}}-\frac{\partial L}{\partial x}\right) \cdot \delta x \\
& =G J_{h}^{-T}\left(\frac{d}{d t} \frac{\partial L}{\partial \dot{\theta}}-\frac{\partial L}{\partial \theta}-\tau\right) \cdot \delta x+\left(\frac{d}{d t} \frac{\partial L}{\partial \dot{x}}-\frac{\partial L}{\partial x}\right) \cdot \delta x,
\end{aligned}
$$

Equation of Motion

Dynamics of the system

(Apply Lagrangian-d'Alembert equation)

- Configuration: $q=(\theta, x)$
- Lagrangian: $L=\frac{1}{2} \dot{\theta}^{T} M_{f} \dot{\theta}+\frac{1}{2} \dot{x}^{T} M_{o} \dot{x}-V_{f}(\theta)-V_{o}(x)$,
- Virtual displacement: $\delta q=(\delta \theta, \delta x)$
- Lagrange-d'Alembert equations:

$$
\left(\frac{d}{d t} \frac{\partial L}{\partial \dot{q}}-\frac{\partial L}{\partial q}-\left[\begin{array}{c}
\tau \\
0
\end{array}\right]\right) \cdot \delta q=G J_{h}^{-T}\left(\frac{d}{d t} \frac{\partial L}{\partial \dot{\theta}}-\frac{\partial L}{\partial \theta}-\tau\right) \cdot \delta x+\left(\frac{d}{d t} \frac{\partial L}{\partial \dot{x}}-\frac{\partial L}{\partial x}\right) \cdot \delta x,=0
$$

- Since δx is free:

$$
\left(\frac{d}{d t} \frac{\partial L}{\partial \dot{x}}-\frac{\partial L}{\partial x}\right)+G J_{h}^{-T}\left(\frac{d}{d t} \frac{\partial L}{\partial \dot{\theta}}-\frac{\partial L}{\partial \theta}\right)=G J_{h}^{-T} \tau .
$$

Equation of Motion

Dynamics of the system

(Apply Lagrangian-d'Alembert equation)

- Furthermore, eliminate $\dot{\theta}, \ddot{\theta}$, and obtain the final equation of motion:

$$
\left(\frac{d}{d t} \frac{\partial L}{\partial \dot{x}}-\frac{\partial L}{\partial x}\right)+G J_{h}^{-T}\left(\frac{d}{d t} \frac{\partial L}{\partial \dot{\theta}}-\frac{\partial L}{\partial \theta}\right)=G J_{h}^{-T} \tau .
$$

$$
\tilde{M}(q) \ddot{x}+\tilde{C}(q, \dot{q}) \dot{x}+\tilde{N}(q, \dot{q})=F,
$$

$$
\begin{aligned}
\tilde{M} & =M_{o}+G J_{h}^{-T} M_{f} J_{h}^{-1} G^{T} \\
\tilde{C} & =C_{o}+G J_{h}^{-T}\left(C_{f} J_{h}^{-1} G^{T}+M_{f} \frac{d}{d t}\left(J_{h}^{-1} G^{T}\right)\right) \\
\tilde{N} & =N_{o}+G J_{h}^{-T} N_{f} \\
F & =G J_{h}^{-T} \tau
\end{aligned}
$$

Equation of Motion (conclusion)

- Equation of motion for robot hand

$$
\begin{aligned}
& \tilde{M}(q) \ddot{x}+\tilde{C}(q, \dot{q}) \dot{x}+\tilde{N}(q, \dot{q})=F, \\
& \quad \tilde{M}=M_{o}+G J_{h}^{-T} M_{f} J_{h}^{-1} G^{T} \\
& \quad \tilde{C}=C_{o}+G J_{h}^{-T}\left(C_{f} J_{h}^{-1} G^{T}+M_{f} \frac{d}{d t}\left(J_{h}^{-1} G^{T}\right)\right) \\
& \tilde{N}=N_{o}+G J_{h}^{-T} N_{f} \\
& F=G J_{h}^{-T} \tau . \quad \text { If a grasp is force-closure, this term is internal forces }
\end{aligned}
$$

- Properties of the derived equation of motion (Temporally Proof omitted)

1. $\tilde{M}(q)$ is symmetric and positive definite.
2. $\dot{\tilde{M}}(q)-2 \tilde{C}$ is a skew-symmetric matrix.

Finding Contact Force

- Goal: Find the instantaneous contact forces during motion.
- Internal forces: if a grasp is force-closure, then there exist contact forces which produce no net wrench on the object.
- In dynamics, internal forces $F=G J_{h}^{-T} \tau$ maps joint torques into object forces.
- If $J_{h}^{-T} \tau \in \mathcal{N}(\mathcal{G})$, no net wrench is generated
- But even if $J_{h}^{-T} \tau \notin \mathcal{N}(\mathcal{G})$, internal forces still exists due to those constraint forces which the Lagrange-d'Alembert equations eliminated.
- Recall full equation of motion with pfaffian constraints:

$$
\begin{aligned}
& \frac{d}{d t} \frac{\partial L}{\partial \dot{q}}-\frac{\partial L}{\partial q}+A^{T}(q) \lambda-\Upsilon=0, \quad A(q)=\left[-J_{h}(\theta, x) \quad G^{T}(\theta, x)\right] \\
& {\left[\begin{array}{cc}
M_{f} & 0 \\
0 & M_{o}
\end{array}\right]\left[\begin{array}{l}
\ddot{\theta} \\
\ddot{x}
\end{array}\right]+\left[\begin{array}{cc}
C_{f} & 0 \\
0 & C_{o}
\end{array}\right]\left[\begin{array}{c}
\dot{\theta} \\
\dot{x}
\end{array}\right]+\left[\begin{array}{c}
N_{f} \\
N_{o}
\end{array}\right]+\left[\begin{array}{c}
-J_{h}^{T} \\
G
\end{array}\right] \lambda=\left[\begin{array}{c}
\tau \\
0
\end{array}\right] \begin{array}{l}
\text { Lagrangian multiplier } \lambda: \\
\text { contact forces }
\end{array}}
\end{aligned}
$$

Finding Contact Force

- Solve for Lagrange multiplier using results in Section 1.2. Lagrange Multipliers

$$
\begin{aligned}
& {\left[\begin{array}{cc}
M_{f} & 0 \\
0 & M_{0}
\end{array}\right]}
\end{aligned}\left[\begin{array}{l}
\ddot{\theta} \\
\ddot{x}
\end{array}\right]+\underbrace{\left[\begin{array}{cc}
C_{f} & 0 \\
0 & C_{o}
\end{array}\right]}_{\bar{C}}\left[\begin{array}{c}
\dot{\theta} \\
\dot{x}
\end{array}\right]+\underbrace{\left[\begin{array}{c}
N_{f} \\
N_{o}
\end{array}\right]}_{\bar{N}}+\left[\begin{array}{c}
-J_{h}^{T} \\
G
\end{array}\right] \lambda=\left[\begin{array}{c}
\tau \\
0
\end{array}\right]
$$

- Another method to solve for constraint forces
- If J_{h} is invertible, directly using the joint acceleration.

$$
\lambda=J_{h}^{-T}\left(\tau-M_{f} \ddot{\theta}-C_{f} \dot{\theta}-N_{f}\right) .
$$

Other Robot Systems

- Let's see some examples.
- Robot system subject to constrains of $J(q) \dot{\theta}=G^{T}(q) \dot{x}$ have dynamics with the same form and structure we introduced before.

Coordinated lifting

$$
\underbrace{\left[\begin{array}{ccc}
\operatorname{Ad}_{g_{s_{1} t_{1}}}^{-1} & J_{s_{1} t_{1}}^{s} & \\
\\
& \ddots & 0 \\
0 & & \operatorname{Ad}_{g_{s_{k} t_{k}}}^{-1} J_{s_{k} t_{k}}^{s}
\end{array}\right]}_{J} \dot{\theta}=\underbrace{\left[\begin{array}{c}
\mathrm{Ad}_{g_{o t_{1}}}^{-1} \\
\vdots \\
\operatorname{Ad}_{g_{o t_{k}}}^{-1}
\end{array}\right]}_{G^{T}} V_{p o}^{b}
$$

Other Robot Systems

```
Workspace dynamics
```


Motoman robot performing a welding task Robot grasping a welding tool

$$
M_{o}(x) \ddot{x}+C_{o}(x, \dot{x}) \dot{x}+N_{o}(x, \dot{x})=0
$$

Dynamics of the system

- $\quad g: Q \rightarrow \mathbb{R}^{p} \quad$, Jacobian: $J(\theta)=\frac{\partial g}{\partial \theta}$
- Kinematics: $J(\theta) \dot{\theta}=\dot{x}$,
- Dynamics: $\tilde{M}(q) \ddot{x}+\tilde{C}(q, \dot{q}) \dot{x}+\tilde{N}(q, \dot{q})=F$,

$$
\tilde{M}=M_{o}+J^{-T} M_{f} J^{-1}
$$

$$
\tilde{C}=C_{o}+J^{-T}\left(C_{f} J^{-1}+M_{f} \frac{d}{d t}\left(J^{-1}\right)\right)
$$

$$
\tilde{N}=N_{o}+J^{-T} N_{f}
$$

$$
F=J^{-T} \tau
$$

Other Robot Systems

```
Hybrid position/force dynamics
```

- This kind of tasks consist of both a desired motion and a desired force
- Constraint: $h(\theta, x)=0$

$$
\underbrace{\frac{\partial h}{\partial \theta}}_{J} \dot{\theta}=\underbrace{-\frac{\partial h}{\partial x}}_{G^{T}} \dot{x}
$$

- Dynamics: $\tilde{M}(q) \ddot{x}+\tilde{C}(q, \dot{q}) \dot{x}+\tilde{N}(q, \dot{q})=F$,

$$
\begin{aligned}
\tilde{M} & =G J^{-T} M_{f} J^{-1} G^{T} \\
\tilde{C} & =G J^{-T}\left(C_{f} J^{-1} G^{T}+M_{f} \frac{d}{d t}\left(J^{-1} G^{T}\right)\right) \\
\tilde{N} & =N_{o}+G J^{-T} N_{f} \\
F & =G J^{-T} \tau .
\end{aligned}
$$

Contents of This Talk

- Recall
- Lagrange's Equations with Constraints
- Robot Hand Dynamics
- Redundant and Nonmanipulable Robot Systems
- Dynamics of redundant manipulator
- Nonmanipulable grasps
- Example: Two-fingered SCARA grasp
- Kinematics and Statics of Tendon Actuation
- Control of Robot Hand

Dynamics for These Robot Systems (conclusion)

- How to analyze dynamics redundant and/or nonmanipulable robot systems subject to constraints?
- Constraints: $J_{h}(\theta, x) \dot{\theta}=G^{T}(\theta, x) \dot{x}$

Redundant

Nonmanipulable

Constraints introduce kinematic/actuator redundancy into robot system.

What it is

- Kinematic redundancy :finger motions which do not affect object motion.
- Actuator redundancy : finger forces which do not affect object motion. i.e., Internal forces.
- Manipulable: when arbitrary motions can be generated by fingers
- Nonmanipulable: when finger motion cannot achieve some motions of the individual contacts.

What J_{h} looks like equation of motion

- J_{h} has a non-trivial null space, which describes those joint motions.
- J_{h} is not full row rank
- J_{h} does not span the range of G^{T}

Extend the constraints by brining K_{h} which spans the null space of J_{h}.

$$
\underbrace{\left[\begin{array}{c}
J_{h} \\
K_{h}
\end{array}\right]}_{\bar{J}_{h}} \dot{\theta}=\underbrace{\left[\begin{array}{cc}
G^{T} & 0 \\
0 & I
\end{array}\right]}_{\bar{G}^{T}}\left[\begin{array}{c}
\dot{x} \\
v_{N}
\end{array}\right]
$$

Rewrite the constraints by bringing H which spans the space of allowable object trajectories.

$$
J_{h} \dot{\theta}=\underbrace{G^{T} H}_{\bar{G}^{T}} w
$$

Examples: Two-fingered SCARA grasp

- Write the basic grasp constraints:
$\begin{aligned} & 8 \uparrow\left[\begin{array}{cc}J_{h 1} & 0 \\ 0 & J_{h 2}\end{array}\right] \\ & \overleftrightarrow{8} \dot{\theta}\end{aligned}{ }_{8}^{\left[\begin{array}{l}G_{1}^{T} \\ G_{2}^{T}\end{array}\right]} V_{p o}^{b}$.
Notice this $J_{h}(\theta)$ is not invertible
i. Solve for redundancy
ii. Solve for Nonmanipulable

Examples: i. Solve for Redundancy

- Define K where $\frac{\partial y}{\partial \theta}=K(\theta)$.
- We define $h(\theta)=\left(\theta_{11}+\theta_{12}+\theta_{13}, \theta_{21}+\theta_{22}+\theta_{23}\right)$

- So that $K_{1}=\left[\begin{array}{llll}1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0\end{array}\right], K_{2}=\left[\begin{array}{llll}0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0\end{array}\right]$
- Expand the constraints:

- Notice we increased the internal variables to describe the internal motion. i.e. velocity \dot{y}.
- But it does not alter the nonmanipulable nature since J_{h} still does not span the range of G^{T}.

Examples: ii. Solve for Nonmanipulable

- Define the space of allowable object velocities
- $W(\theta, x)=\left\{\dot{x} \in \mathbb{R}^{p}: \exists \dot{\theta} \in \mathbb{R}^{m}\right.$ with $\left.J_{h} \dot{\theta}=G^{T} \dot{x}\right\}$.
\Uparrow It has l dimensions

- i.e. Object can move along [0,1,0,0,0,0] ${ }^{T}$
\circ i.e. But object cannot move along $[0,0,0,0,1,0]^{T}$ (Rotating around Y -axis)
- Next, we construct a matrix $H(\theta, x) \in \mathbb{R}^{p \times l}$ using $W(\theta, x)$
- Every column of H is the allowing object velocity in W (basis) $H=$
- Rewrite grasp constraints:
$\left[\begin{array}{lllll|ll}1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & & 0 \\ 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1\end{array}\right]=\left[\begin{array}{lll}H^{\prime} & 0 \\ \hline 0 & I\end{array}\right]$

$$
\left.10 \underset{8}{\downarrow} \begin{array}{|c|c}
{\left[\begin{array}{c|c}
J_{h 1} & 0 \\
0 & J_{h 2} \\
\hline K_{1} & K_{2}
\end{array}\right]} \\
\dot{\theta} & =\begin{array}{c}
G_{1}^{T} H^{\prime} \\
G_{2}^{T} H^{\prime}
\end{array} \\
\hline 0 & 0 \\
\hline 0 & I
\end{array}\right]\left[\begin{array}{c}
w^{\prime} \\
\dot{y}
\end{array}\right]
$$

Recall rewritten formulation
$J_{h} \dot{\theta}=G^{T} H w$
$\dot{x}=H w, \quad$$\dot{x} \in \mathbb{R}^{p}:$ object velocity $w \in \mathbb{R}^{l}:$ object velocity in terms of the basis of H

Contents of This Talk

- Recall
- Lagrange's Equations with Constraints
- Robot Hand Dynamics
- Redundant and Nonmanipulable Robot Systems
- Kinematics and Statics of Tendon Actuation
- Inelastic tendons
- Elastic tendons
- Analysis and control of tendon-driven fingers
- Control of Robot Hand

Tendon-Driven Finger

- Introduce a mechanism to carry forces from an actuator to the appropriate joint.
- Model the routing of each tendon by an extension function:
- $h_{i}: Q \rightarrow \mathbb{R}$
- It measures the displacement of tendon end and the joint angles of the finger

○ i.e. $h_{i}(\theta)=l_{i} \pm r_{i 1} \theta_{1} \pm \cdots \pm r_{i n} \theta_{n}$
ㄴ ᄂـ
l_{i} : Nominal extension (at $\theta=0$)
$r_{i j}$: radius of the j-th joint pulley

A simple tendon-driven finger
Consists of linkages, tendons, gears, and pulleys

Inelastic Tendons

- Introduce a mechanism to carry forces from an actuator to the appropriate joint.
- Model the routing of each tendon by an extension function:
- $h_{i}: Q \rightarrow \mathbb{R}$
- It measures the displacement of tendon end and the joint angles of the finger

○ i.e. $h_{i}(\theta)=l_{i} \pm r_{i 1} \theta_{1} \pm \cdots \pm r_{i n} \theta_{n}$
ㄴ ᄂـ
l_{i} : Nominal extension (at $\theta=0$)
$r_{i j}$: radius of the j-th joint pulley

A finger which is actuated by a set of inelastic tendons

Inelastic Tendons

- Finger examples and their extension functions

Example of tendon routing with non
linear extension function

- Extension functions:
$h_{2}=l_{2}-R_{1} \theta_{1}$
$h_{3}=l_{3}+R_{1} \theta_{1}$.
$h_{1}=l_{1}+2 \sqrt{a^{2}+b^{2}} \cos \left(\tan ^{-1}\left(\frac{a}{b}\right)+\frac{\theta_{1}}{2}\right)-2 b-R_{2} \theta_{2} \quad \theta_{1}>0$.
$h_{4}=l_{4}+R_{1} \theta_{1}+R_{2} \theta_{2}$
- Extension functions:

$$
\begin{align*}
& h_{1}(\theta)=l_{1}+2 \sqrt{a^{2}+b^{2}} \cos \left(\tan ^{-1}\left(\frac{a}{b}\right)+\frac{\theta}{2}\right)-2 b \quad \theta>0 \\
& h_{2}(\theta)=l_{2}+R \theta, \quad \theta>0
\end{align*}
$$

Planar tendon-driven finger

Inelastic Tendons

- Let's define the relationships between the tendon forces and the joint torques using tendon extension functions.
- Tendon extensions vectors with p tendons: $e=h(\theta) \in \mathbb{R}^{p}$
- Define coupling matrix: $P(\theta)=\frac{\partial h^{T}}{\partial \theta}(\theta)$ mapping tendon forces and the joint torques
- So $\dot{e}=\frac{\partial h}{\partial \theta}(\theta) \dot{\theta}=P^{T}(\theta) \dot{\theta}$.
- Since work done by the tendons must equal that done by the fingers (conservation of energy): $\tau=P(\theta) f$ where $f \in \mathbb{R}^{p}$ is the force applied to the tendons tends.
- Combined kinematics and dynamics:

$$
M(\theta) \ddot{\theta}+C(\theta, \dot{\theta}) \dot{\theta}+N(\theta, \dot{\theta})=P(\theta) f
$$

Inelastic Tendons

. $\tau=P(\theta) f$
Joint Coupling Tendon
torques matrix forces

- $M(\theta) \ddot{\theta}+C(\theta, \dot{\theta}) \dot{\theta}+N(\theta, \dot{\theta})=P(\theta) f$
- An example

- Extension function

$$
\begin{array}{lll}
h_{2}=l_{2}-R_{1} \theta_{1} & h_{1}=l_{1}+2 \sqrt{a^{2}+b^{2}} \cos \left(\tan ^{-1}\left(\frac{a}{b}\right)+\frac{\theta_{1}}{2}\right)-2 b-R_{2} \theta_{2} & \theta_{1}>0 . \\
h_{3}=l_{3}+R_{1} \theta_{1} . & h_{4}=l_{4}+R_{1} \theta_{1}+R_{2} \theta_{2} &
\end{array}
$$

- Coupling matrix

$$
P(\theta)={\frac{\partial h^{T}}{\partial \theta}}^{T}=\left[\begin{array}{cccc}
-\sqrt{a^{2}+b^{2}} \sin \left(\tan ^{-1}\left(\frac{a}{b}\right)+\frac{\theta_{1}}{2}\right) & -R_{1} & R_{1} & R_{1} \\
-R_{2} & 0 & 0 & R_{2}
\end{array}\right]
$$

Elastic Tendons

- Applying a single spring element at the base of the tendon:

Planar finger with position-controlled elastic tendons

- Extension functions

$$
\begin{aligned}
h_{1} & =l_{1}+r_{11} \theta_{1}-r_{12} \theta_{2} \\
h_{2} & =l_{2}-r_{21} \theta_{1} \\
h_{3} & =l_{3}+r_{31} \theta_{1} \\
h_{4} & =l_{4}-r_{41} \theta_{1}+r_{42} \theta_{2}
\end{aligned}
$$

- Coupling Matrix

$$
P(\theta)=\frac{\partial h^{T}}{\partial \theta}=\left[\begin{array}{cccc}
r_{11} & -r_{21} & r_{31} & -r_{41} \\
-r_{12} & 0 & 0 & r_{42}
\end{array}\right]
$$

- We also want to establish the relationship between tendon extension and the joint torques using a new coupling matrix

Elastic Tendons

- Let's define the relationships between the tendon extension and the joint torques using a new coupling matrix.
- Extension of the tendon as commanded by the actuator: e_{i}
- Extension of the tendon due to the mechanism: $h_{i}(\theta)$
- Net force applied to tendons: $f_{i}=k_{i}\left(e_{i}+h_{i}(0)-h_{i}(\theta)\right)$
- Define K : diagonal matrix of tendon stiffnesses, where k_{i} is the stiffness of i-th tendon

$$
f=K(e+h(0)-h(\theta))
$$

- Write dynamics:

$$
\begin{array}{r}
M(\theta)+C(\theta, \dot{\theta}) \dot{\theta}+N(\theta, \dot{\theta})+\underset{\substack{\text { Models the stiffness of the } \\
\text { tendon network }}}{P K(h(\theta)-h(0))}=P K e \\
S(\theta):=P K(h(\theta)-h(0)) \quad Q:=P K
\end{array}
$$

Elastic Tendons

- $\tau=Q e, Q:=P K$
 Joint New Tendon

torques coupling extension matrix

- $M(\theta)+C(\theta, \dot{\theta}) \dot{\theta}+N(\theta, \dot{\theta})+P K(h(\theta)-h(0))=P K e$
- An example (top-right finger):
- We already wrote the extension function $h_{1}, h_{2}, h_{3}, h_{4}$ and coupling matrix $P(\theta)$
- Stiffness matrix :

$$
K=\left[\begin{array}{cccc}
k_{1} & 0 & 0 & 0 \\
0 & k_{2} & 0 & 0 \\
0 & 0 & k_{3} & 0 \\
0 & 0 & 0 & k_{4}
\end{array}\right]
$$

- Overall stiffness:

$$
\begin{aligned}
S(\theta) & =P K(h(\theta)-h(0)) \\
& =\left[\begin{array}{cc}
k_{1} r_{11}^{2}+k_{2} r_{21}^{2}+k_{3} r_{31}^{2}+k_{4} r_{41}^{2} & -k_{1} r_{11} r_{12}-k_{4} r_{41} r_{42} \\
-k_{1} r_{11} r_{12}-k_{4} r_{41} r_{42} & k_{1} r_{12}^{2}+k_{4} r_{42}^{2}
\end{array}\right] \theta
\end{aligned}
$$

- New coupling matrix that mapping joint torques and tendon extension

$$
Q=P K=\left[\begin{array}{cccc}
k_{1} r_{11} & -k_{2} r_{21} & k_{3} r_{31} & -k_{4} r_{41} \\
-k_{1} r_{12} & 0 & 0 & k_{4} r_{42}
\end{array}\right]
$$

Control of Tendon-Driven Fingers

- First, define a tendon network is force-closure:
- For any $\tau \in \mathbb{R}^{n}$ there exists a set of forces $f \in \mathbb{R}^{p}$ such that

$$
P(\theta) f=\tau \quad \text { and } \quad f_{i}>0, i=1, \ldots, p
$$

- So the necessary and sufficient condition is P be surjective and there exist a strictly positive vector of internal forces $f_{N} \in \mathbb{R}^{p}, f_{N, i}>0$ such that $P(\theta) f_{N}=0$
- Verify the necessary number of tendons to construct a force-closure tendon network:
- " $N+1$ " tendon configuration:
- N tendons which generate torques in the opposite direction
- 1 tendon which pulls on all of the joints in one direction
- " $2 N$ " tendon configuration:
- 2 tendons to each joint (total N joints), acting in opposite directions

Control of Tendon-Driven Fingers

- Next, write the tendon forces for inelastic tendons:

$$
f=P^{+}(\theta) \tau+f_{N}
$$

pseudo-inversed Internal forces to coupling matrix ensure all $h>0$

- Also, let's move on to elastic tendons:
- We must solve the following equations:

$$
P(\theta) K e=\tau \quad \text { and } \quad e_{i}+h_{i}(0)-h_{i}(\theta)>0, i=1, \ldots, p
$$

- How to solve: assume tendon network is force-closure, there exists a vector of extensions $e_{N} \in \mathbb{R}^{p}$ such that $e_{N, i}>0$ and $P K e_{N}=0$, so we will choose very large e_{N} we can obtain:

$$
e=(P K)^{+} \tau+e_{N}
$$

Contents of This Talk

- Recall
- Lagrange's Equations with Constraints
- Robot Hand Dynamics
- Redundant and Nonmanipulable Robot Systems
- Kinematics and Statics of Tendon Actuation
- Control of Robot Hand
- Extending controllers
- Hierarchical control structures

Control

- Recall some definition in Chapter 4:

A simple model of robot closed-
loop control system

- Actual motion: θ
- Error: $e=\theta_{d}-\theta$
- Constant gain matrices: K_{v}, K_{p}
- Dynamics (without constraints): $M(\theta) \ddot{\theta}+C(\theta, \dot{\theta}) \dot{\theta}+N(\theta, \dot{\theta})=\tau$
- Computed torque control law: $\tau=M(\theta)\left(\ddot{\theta}_{d}-K_{v} \dot{e}-K_{p} e\right)+C(\theta, \dot{\theta}) \dot{\theta}+N(\theta, \dot{\theta})$
- Computing torque $\tau=\underbrace{M(\theta) \ddot{\theta}_{d}+C \dot{\theta}+N}_{\tau_{\mathrm{ff}}}+\underbrace{M(\theta)\left(-K_{v} \dot{e}-K_{p} e\right)}_{\tau_{\mathrm{fb}}}$

Control

- Here, we consider robot hand control as control problems with constraints

Goal	How to achieve?
i. Tracking a given object/workspace trajectory	Find joint torques which satisfy the tracking requirement
ii. Maintaining a desired internal force	Add sufficient internal forces to keep the contact forces inside the appropriate friction cones

- We derived dvnamics of this kind of constrained svstem

$$
M(q) \ddot{x}+C(q, \dot{q}) \dot{x}+N(q, \dot{q})=F=G J^{-T} \tau
$$

- Error: $e:=x-x_{d}$
- Let's achieve these two goal one by one

i. Tracking Trajectory

$$
M(q) \ddot{x}+C(q, \dot{q}) \dot{x}+N(q, \dot{q})=F=G J^{-T} \tau
$$

- Given a desired workspace trajectory $x_{d}(\cdot)$
- Computed torque controller:

$$
F=M(q)\left(\ddot{x}_{d}-K_{v} \dot{e}-K_{p} e\right)+C(q, \dot{q}) \dot{x}+N(q, \dot{q})
$$

- From $F=G J^{-T} \tau$ we can find τ than satisfying F (actually we could find extra τ that corresponds to internal forces)
- Solve for τ :

$$
\tau=J^{T} G^{+} F+J^{T} f_{N}
$$

ii. Maintaining Internal Forces

$$
M(q) \ddot{x}+C(q, \dot{q}) \dot{x}+N(q, \dot{q})=F=G J^{-T} \tau
$$

- f_{N} must be chosen such that the net contact force lies in the friction cone FC
- Two ways to solve for internal forces
- Method 1: compute final control law

$$
\tau=J_{h}^{T} G^{+} F+J_{h}^{T} f_{N, d}
$$

- Method 2: measure the applied internal forces and adjust f_{N} using a second feedback control law.

$$
f=f_{d}+\alpha \int\left(f-f_{d}\right) d t
$$

Hierarchical Control Structures

- A multifingered robot hand can be modeled as a set of robots which are coupled to each other and an object by a set of velocity constraints
- Let's establish the control system following these steps:

1. Defining robots
2. Attaching robots
3. Controlling robots
4. Building hierarchical controllers

Hierarchical Control Structures

1. Defining robots
2. Attaching robots
3. Controlling robots
4. Building hierarchical controllers

Hierarchical Control Structures

1. Defining robots
2. Attaching robots
3. Controlling robots
4. Building hierarchical controllers

Hierarchical Control Structures

1. Defining robots
2. Attaching robots
3. Controlling robots
4. Building hierarchical controllers

Hand: asks for current state, x_{b} and \dot{x}_{b}
Finger: ask for current state, x_{f} and \dot{x}_{f}
Left: read current state, θ_{l} and $\dot{\theta}_{l}$
Right: read current state, θ_{r} and $\dot{\theta}_{r}$
Finger: $x_{f}, \dot{x}_{f} \leftarrow f\left(\theta_{T}, \theta_{r}\right), J\left(\dot{\theta}_{l}, \dot{\theta}_{r}\right)$
Hand: $x_{b}, \dot{x}_{b} \leftarrow g\left(x_{f}\right), G^{+T} \dot{x}_{f}$.

